

No. 18-956

In the Supreme Court of the United States

GOOGLE LLC,
Petitioner,

v.

ORACLE AMERICA, INC.
Respondent.

On Writ of Certiorari to the

United States Court of Appeals for the Federal Circuit

BRIEF OF SAS INSTITUTE INC. AS AMICUS
CURIAE IN SUPPORT OF RESPONDENT

PETER K. STRIS
ELIZABETH ROGERS BRANNEN
 Counsel of Record
DANA BERKOWITZ
DOUGLAS D. GEYSER
JHANIEL JAMES
JOHN STOKES
Stris & Maher LLP
777 S. Figueroa St., Ste. 3850
Los Angeles, CA 90017
(213) 995-6800
elizabeth.brannen@strismaher.com

Counsel for Amicus Curiae

i

TABLE OF CONTENTS

INTEREST OF AMICUS CURIAE 1

SUMMARY OF ARGUMENT .. 2

ARGUMENT ... 4

I. SOFTWARE INTERFACES EMBODY
ORIGINAL AND CREATIVE
EXPRESSION ... 4

II. COPYING TO REPLACE A
COMPETITOR’S PRODUCT IS NOT
“INTEROPERABILITY” 17

III. MEANINGFUL COPYRIGHT
PROTECTION FOR SOFTWARE
INTERFACES IS VITAL TO THE
PROGRESS OF SCIENCE 20

CONCLUSION .. 30

ii

TABLE OF AUTHORITIES

 Page(s)

Cases

Apple Computer, Inc. v. Formula Int’l, Inc.,
725 F.2d 521 (9th Cir. 1984) ... 16

Bateman v. Mnemonics, Inc.,
79 F.3d 1532 (11th Cir. 1996) 15

Computer Assocs. Int’l, Inc. v. Altai, Inc.,
982 F.2d 693 (2d Cir. 1992) 5, 29

Dun & Bradstreet Software Servs., Inc. v.
Grace Consulting, Inc.,
307 F.3d 197 (3d Cir. 2002) ... 6

Eng’g Dynamics, Inc. v. Structural
Software, Inc.,
26 F.3d 1335 (5th Cir. 1994) ... 6

Feist Publ’ns, Inc. v. Rural Tel. Serv. Co.,
499 U.S. 340 (1991) .. 16

Golan v. Holder,
565 U.S. 302 (2012) .. 16

Lexmark Int’l, Inc. v. Static Control
Components, Inc.,
387 F.3d 522 (6th Cir. 2004) 17, 18, 29

Lotus Dev. Corp. v. Borland Int’l, Inc.,
49 F.3d 807 (1st Cir. 1995) .. 29

iii

Mazer v. Stein,
347 U.S. 201 (1954) .. 24

Mitel, Inc. v. Iqtel Inc.,
124 F.3d 1366 (10th Cir. 1997) 5

SAS Institute, Inc. v. World Programming
Ltd.,
874 F.3d 370 (4th Cir. 2017), cert.
denied, 139 S. Ct. 67 (2018) 25, 26, 30

Satava v. Lowry,
323 F.3d 805 (9th Cir. 2003) ... 16

Sega Enters., Inc. v. Accolade, Inc.,
977 F.2d 1510 (9th Cir. 1992) 6, 18, 29

Sony Computer Entm’t, Inc. v. Connectix
Corp.,
203 F.3d 596 (9th Cir. 2000) 18, 29

Statutes

17 U.S.C. § 101 ... 5, 15

17 U.S.C. § 102(a) ... 4, 5, 16

17 U.S.C. § 102(b) .. 3, 5, 27

17 U.S.C. § 110 ... 5

17 U.S.C. § 117 ... 5

17 U.S.C. § 121(b) .. 5

iv

Other Authorities

2019 Annual Report: Celebrating 20 Years
of Salesforce (2019),
http://bit.ly/2OP25yX. ... 22, 23

About The Licenses, Creative Commons,
http://bit.ly/39vF6RC ... 28

Apigee, API Best Practices (2016) 8

Alison Bolen, Analytics Leads To Cancer
Cures, SAS Institute Inc.,
http://bit.ly/31NO3mq .. 1

Philippe Botteri & Maxim Filippov, 2019
Accel Euroscape—The Rise of
European SaaS Continues,
http://bit.ly/3bx20JY ... 21

BSA Foundation, The Growing $1 Trillion
Economic Impact of Software (Sept.
2017), https://tinyurl.com/y77xjgke 20

Jacques Bughin et al., Innovation in
Europe, McKinsey Global Initiative
(Oct. 2019), https://mck.co/31LWLSi 22

Stephen Cass, The Top Programming
Languages 2019, IEEE Spectrum
(Sept. 6, 2019, 4:30 PM),
http://bit.ly/2OPOAJ ... 21

v

Dan Cook, Software Publishing Industry
in the US, IbisWorld (July 2019),
http://bit.ly/2SFKdI9 .. 21

Eclipse Collections, http://bit.ly/38lpfVD 14

Martin Georgiev et al., The Most
Dangerous Code in the World:
Validating SSL Certificates in Non-
Browser Software, CCS’12:
Proceedings of the 2012 ACM
Conference on Computer and
Communications Security (2012),
http://bit.ly/2vp3zsY .. 7

Walter Harding & Carl Bode eds., The
Correspondences of Thoreau (1958).............................. 6

Introducing the Permissive License Stack,
Protocol Labs (Feb. 14, 2019),
http://bit.ly/2w7yw5e ... 28

Introduction to the Java HTTP Client,
http://bit.ly/38vysdQ .. 13

Greg Ip, If the Economy Booms, Thank
Software, Wall St. J. (May 29, 2019) 20

Java Platform Standard Ed. 11 API
Specification, http://bit.ly/38oHAAS 13

Adam Lashinsky, An Ex-Cisco Exec
Reflects, Fortune (Mar. 20, 2014),
http://bit.ly/2HjCsCe ... 19

vi

Arnaud Lauret, The Design of Web APIs
(Oct. 2019) ... 7

Licenses, Android Open Source Project,
http://bit.ly/2SkymQy ... 23

Mark Zuckerberg Testimony: Senators
Question Facebook’s Commitment to
Privacy, N.Y. Times (Apr. 10, 2018),
https://nyti.ms/2OOQmjW .. 24

MessageFormat, Android Platform API
Reference, http://bit.ly/2uE8Ixa 10

MessageFormat, Java 2 Platform Standard
Ed. 5.0 API Specification,
http://bit.ly/39y3YIt .. 10, 11

Rani Molla, Why Your Free Software Is
Never Free, Vox (Jan. 29, 2020),
http://bit.ly/2SDWCMv ... 24

Mozilla Public License,
https://mzl.la/2ONbC9Z ... 28

Brian Mulloy, Web API Design: Crafting
Interfaces that Developers Love (2012),
http://bit.ly/37k9HQG .. 7

Press Release, SAS Honored as a Stevie
Award Winner in 2019 American
Business Awards (Jun. 26, 2019),
http://bit.ly/2HhDHSz ... 20

vii

The Red Hat Enterprise Agreement,
https://red.ht/2SIMz8Y .. 28

Secure Coding in Java: Bad Online Advice
and Confusing APIs, Help Net
Security (Oct. 3, 2017),
http://bit.ly/2ONEQoV .. 14

Spring Framework Overview,
http://bit.ly/2OLYd1I ... 14

William Strunk Jr. & E.B. White,
The Elements of Style (4th ed. 1999) 6

Keshav Vasudevan, Best Practices in API
Design, Swagger Blog (Oct. 10, 2016),
http://bit.ly/38otnnF .. 7

Charlie Warzel & Ash Ngu, Google’s 4,000-
Word Privacy Policy Is a Secret
History of the Internet, N.Y. Times
(July 10, 2019) ... 24

What is Saas? Software as a Service,
Microsoft, http://bit.ly/3bzEXOE 22

The World’s Most Innovative Companies
(2018), Forbes, http://bit.ly/2SmZmik 21

1

INTEREST OF AMICUS CURIAE1

SAS Institute is one of the world’s largest privately
held software companies. In 1976, it began with five
employees. Today SAS employs nearly 14,000 people and
earns over $3 billion in annual revenue.

SAS’s flagship product is a suite of business software
that facilitates a variety of analyses such as data mining
and business intelligence. Its customers include 92 of the
top 100 companies on the 2018 Fortune Global 1000. They
use SAS products for important pursuits like fighting
cancer.2 SAS continually improves its products and
creates new ones. In 2018, it reinvested 26% of its revenue
in research and development.

Unlike Google and many of its amici, which made a
business decision to distribute software for free and
generate revenue from other sources such as advertising,
SAS is a proprietary software company—it licenses its
software to commercial users in exchange for payment.
But SAS also balances what parts of its software are open,
and what parts are closed. It offers various license terms
for different kinds of uses. SAS also regularly weighs the
business benefits of contributing to industry
standardization, such as increased access and influence,
against those of keeping its technology strictly
proprietary. SAS makes the business decision to
participate in industry-standards bodies like the Data

1 No counsel for any party authored this brief in whole or in part,

and no person or entity other than amicus or its counsel made a
monetary contribution intended to fund the preparation or
submission of this brief. Petitioner’s consent to the filing of amicus
briefs is filed with the Clerk, and respondent has consented to the
filing.

2 See, e.g., Alison Bolen, Analytics Leads To Cancer Cures, SAS
Institute Inc., http://bit.ly/31NO3mq (last visited Feb. 18, 2020).

2

Mining Group. When it does so, SAS makes its standards-
essential intellectual property available to license under
reasonable and nondiscriminatory terms.

SAS can also address first-hand the consequences of
curtailing copyright protection for software interfaces. All
SAS licenses prohibit reverse engineering and copying
without permission. But a British competitor reverse
engineered and copied the SAS System to create a drop-
in replacement, i.e., a clone of the SAS System. When SAS
sued in the United States and Europe, the outcomes were
starkly different. Here, the Fourth Circuit affirmed a $79
million award to SAS based on willful breach of license
(and other state-law claims). For the same misconduct in
the U.K., however, SAS received no redress because
Europe has weaker protection for computer programs
than the United States. The European courts deemed
SAS’s software interfaces not copyrightable and its
license provisions unenforceable.

SAS Institute’s proprietary business model gives SAS
a strong interest in robust intellectual-property
protection for software, including software interfaces. But
as its various license offerings and standards-groups
participation demonstrate, SAS also appreciates the
desirability of access and balance. Given its first-hand
experience, SAS is well-positioned to provide a useful
perspective for assessing the questions presented.

SUMMARY OF ARGUMENT

Google copied over 11,000 lines of source code and the
accompanying structure, sequence, and organization that
Java’s creator painstakingly composed. The code fueled
Java’s success. It took Sun years to create. Google
rejected an available open-source license and copied the
code into its competing product, Android, virtually

3

overnight. Oracle Br. 12-15. Innumerable devices with
Android operating systems contain, in executable form,
the thousands of lines of code that Google copied. C.A. No.
13-1021, J.A. A1092 (citing trial testimony that there are
750,000 daily device activations containing the infringing
code). Google made the business decision to proceed
without a license because it wanted to attract Java
programmers to Android. It seeks a free pass because it
copied what it calls “software interfaces,” which Google
defines as “computer code that allow[s] developers to
operate pre-written libraries of code used to perform
particular tasks.” Google’s Opening Brief i (“Br.”). The
Federal Circuit correctly decided that the Copyright Act
prohibits Google’s conduct.

I. What Google calls software interfaces are entitled to
copyright protection. Google argues that the interfaces
are merely a “method of operation” under 17 U.S.C.
§ 102(b) (codifying the idea/expression dichotomy) and
that the merger doctrine applies because (once Google
decided to use the declarations it copied) there was only
one way to call them. Google’s arguments cannot be
squared with critical facts: (1) it is widely agreed,
including by Google’s own “Java guru,” that interfaces are
the result of an artistic and creative process; and (2) both
Sun (the entity that matters for merger) and, in any event,
Google, could have written the declaring code in many
different ways.

II. Although Google and many of its amici offer
“interoperability” as an excuse, Google copied the
software interfaces not because it wanted Android
applications to interoperate with Java, but so it could
attract Java programmers for Android to replace Java.
“[U]nrebutted evidence” showed “that Google specifically
designed Android to be incompatible with the Java

4

platform and not allow for interoperability with Java
programs.” Pet. App. 46a n.11. No case has found fair use
where the defendant copied to produce an incompatible
product. Regardless, even if Google’s resulting product
were interoperable with Java, it would not constitute fair
use. The notion that software is functional cannot mean it
is fair use to copy portions to create a competing
alternative. That outcome would eviscerate statutory
protection for computer programs and subvert the
constitutional goal of incentivizing new works.

III. Adopting Google’s position would also be bad
policy. Proprietary software companies like SAS and
Oracle depend on copyright protection to invest the vast
sums they do in creating software. That model is thriving
in the U.S., where companies can generally count on
copyright protection. Permitting competitors to copy
software interfaces has undesirable practical
consequences, as SAS Institute can aver from first-hand
experience. If Google prevails, the incentives for software
companies will be exactly backward. Weaker copyright
protection will push companies to restrict access to
software and invest less in innovation. Affirming
meaningful copyright protection, by contrast, will
encourage companies like SAS and Oracle to continue
investing in creating new works and offering liberal
licensing terms. The Court should refrain from revising
copyright law to undermine Congress’s express protection
for computer programs.

ARGUMENT

I. SOFTWARE INTERFACES EMBODY
ORIGINAL AND CREATIVE EXPRESSION

The Copyright Act protects software programs as
“literary works.” 17 U.S.C. § 102(a)(1); see, e.g., Br. 17.

5

The Act repeatedly recognizes copyright ownership in a
“computer program,” which is “a set of statements or
instructions to be used directly or indirectly in a computer
in order to bring about a certain result.” 17 U.S.C. § 101.
The Act refers to “computer programs” throughout. See,
e.g., 17 U.S.C. §§ 109(b)(4), 110(11), 117, 121(b)(2). Google
does not dispute that software interfaces, as it defines
them, are “literary works” within the meaning of
Section 102(a). See Br. 17, 19; Pet. App. 141a. As Google
frames it, “software interfaces are lines of computer
code,” and the copied declarations convey instructions to
be executed by a computer. Br. i, 1-2, 4.

Google nonetheless insists that software interfaces are
a special class of software that does not deserve copyright
protection. Google maintains that Oracle’s declaring code
for Java falls on the wrong side of the “idea/expression
dichotomy” of 17 U.S.C. § 102(b). E.g., Br. 17-18.
According to Google, the code it copied represents the
“one way to perform [the interface’s] function.” Br. 19.
Google thus asks the Court to craft a judicial carve-out
from the Copyright Act for software interfaces, which it
paints as categorically less expressive and more functional
than other computer programs.

Google is wrong. At a basic level, it will often be
difficult definitively to distinguish a “software interface”
from other software. Infra Part I.C. But to the extent
Google’s definition here essentially equates to declaring
code and where interface portions of other code are
identifiable, Google’s argument still fails. That is because
such interfaces can, and frequently do, embody creative
expression. See, e.g., Computer Assocs. Int’l, Inc. v. Altai,
Inc., 982 F.2d 693, 699, 703 (2d Cir. 1992) (“common
system interface” was copyrightable subject matter);
Mitel, Inc. v. Iqtel Inc., 124 F.3d 1366, 1372 (10th Cir.

6

1997) (values for setting telecommunications functions
could be copyrightable); Dun & Bradstreet Software
Servs., Inc. v. Grace Consulting, Inc., 307 F.3d 197, 216
(3d Cir. 2002) (“need to interoperate” did not alter
copyrightability of business software); Sega Enters., Inc.
v. Accolade, Inc., 977 F.2d 1510, 1520 (9th Cir. 1992)
(object code was copyrightable despite implicating
“system interface procedures”); Eng’g Dynamics, Inc. v.
Structural Software, Inc., 26 F.3d 1335, 1345 (5th Cir.
1994) (“[I]f a best-selling program’s interface were not
copyrightable, competitors would be free to emulate the
popular interface exactly so long as the underlying
programs were not substantially similar. This cannot be
the law.”). There are unlimited ways to write interfaces,
and nothing justifies removing them from what the
Copyright Act expressly protects. To the contrary, the
user-friendly expressive choices Sun made became critical
to Java’s success.

A. The thousands of lines of Java declaring code and
the organization Google copied are intricate, creative
expression. They merit “thin” protection only if one
misunderstands the nature of the work.

1. The creativity is undeniable. “Google’s own ‘Java
guru’ conceded that there can be ‘creativity and artistry
even in a single method declaration.’” Pet. App. 154a. His
concession is well-taken. User-friendly expression is
difficult to achieve in any medium. Cf. Letter from Henry
David Thoreau to Harrison Blake (Nov. 16, 1857), in The
Correspondences of Thoreau 498 (Walter Harding & Carl
Bode eds., 1958) (“[I]t will take a long while to make it
short.”); William Strunk Jr. & E.B. White, The Elements
of Style (4th ed. 1999) (advising to, e.g., “[u]se definite,
specific, concrete language” and “[o]mit needless words”).
Software interfaces are no different. The same Google

7

Java guru explains that “[c]ode should read like prose.”
C.A. No. 13-1021, J.A. A3019. The best software interfaces
are concise and intuitive. They should be “[e]asy to learn”
and “to use” and “[a]ppropriate to audience.” Id. at
A30064, A3019. Designing effective interfaces is therefore
“tough,” and “[p]erfection is unachievable.” Id. at A3049.
Crafting them takes enormous creative firepower.

Other developers similarly note the challenges of
authoring well-designed software interfaces. See, e.g.,
Keshav Vasudevan, Best Practices in API Design,
Swagger Blog (Oct. 10, 2016), http://bit.ly/38otnnF (good
interfaces “can quickly be memorized” and should be
“[h]ard to misuse” and “[c]omplete and concise”); Arnaud
Lauret, The Design of Web APIs 71 (Oct. 2019) (“Design
matters, whatever the type of interface, and APIs are no
exception.”); Brian Mulloy, Web API Design: Crafting
Interfaces that Developers Love 4 (2012) (ebook),
http://bit.ly/37k9HQG (“You have to get the design [of the
interface] right, because design communicates how
something will be used. The question becomes—what is
the design with optimal benefit for the app developer?”).

Poorly designed declaring code can have disastrous
real-world consequences. For instance, if programmers
misunderstand the declaring code for opening secure
internet connections, their apps can suffer security
vulnerabilities. E.g., Martin Georgiev et al., The Most
Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software, in CCS ’12:
Proceedings of the 2012 ACM Conference on Computer
and Communications Security (2012),
http://bit.ly/2vp3zsY.

SAS Institute, for its part, tasks a committee of its
most experienced developers to write and revise its
software (including what Google would call the interfaces),

8

precisely because it is so difficult to craft high-quality
expression—i.e., to “communicate[] how something will be
used.” Mulloy, supra. SAS’s developers engage in an
iterative process in which they exercise considerable
judgment in making a wide range of creative choices.

In fact, creative expression matters more for code with
which users interact than it does for the implementing
code Google admits is copyrightable. Contra, e.g., Br. 25
(confining Java’s creativity to implementing code). A
computer runs implementing code as 0s and 1s; no one but
the computer needs to understand it. It “remains a ‘black
box’ to the programmer.” Pet. App. 102a. In contrast, Java
programmers need to know how to call the declaring code,
for that is how they invoke a method. It is therefore critical
for interfaces to be clear and easy to use, i.e., to exemplify
high-quality expression.

An interface’s value thus derives from its quality and
user-friendliness, and the declaring code is an important
piece of what drove Java’s success. Google copied
arguably Java’s most valuable part. See C.A. No. 13-1021,
J.A. A3004 (“APIs can be among a company’s greatest
assets” or its “greatest liabilities.”). As one Google
subsidiary explains, “APIs are the lynchpin to the
success” of several digital businesses, and “it’s critical to
think about design choices from the app developer’s
perspective.” Apigee, API Best Practices 4, 10 (2016)
(ebook), http://bit.ly/2HiEbru. “Many app developer[s]
prefer [formats that are] more readable, more intuitive,
and easier for API developers to implement.” Id. at 13.

Google’s own conduct proves the point. It is no accident
that Google copied code that Java programmers liked—
Google wanted Java programmers and enticed them by
taking code that allowed them to use Android with calls
they already knew. See Pet. App. 172a (“The compatibility

9

Google sought to foster was not with Oracle’s Java
platform or with the JVM central to that platform.
Instead, Google wanted to capitalize on the fact that
software developers were already trained and
experienced in using the Java API packages at issue.”).

Google helped itself to a massive benefit. The 37 API
packages covered over six thousand separate methods,
comprising thousands of lines of code and its intricate
organizing structure. Pet. App. 129a. Those are 6,000 sets
of instructions programmers could use for Android
without any further effort—6,000 that Google didn’t have
to write itself. Cf. Oracle Br. 7-11. Google thus had good
reason to know it could “accelerat[e] its development
process by ‘leverag[ing] Java for its existing base of
developers.’” Pet. App. 172a (first alteration added); see
Br. 3.

But Google was no freer to copy that code than a
novelist is free to copy prose from another book. Those
interfaces are the product of Sun’s creative choices—
decisions to write the declaring code precisely the way it
did, selecting specific words and structure. Like any
effective prose, interfaces’ value and popularity stem from
their concise and intuitive expression. Google’s contrary
contention that declaring code “is entirely functional,” Br.
19, has no grounding in reality.

2. The record provides numerous examples of Java’s
creativity. For instance, take Oracle’s “verify” method
(Oracle Br. 5) or Google’s simple “max” example (Br. 5-6;
Pet. App. 224a-226a). Even with “max” the declaring code
notably reflects more creativity than the straightforward
implementing code:

(Line 1) package java.lang
(Line 2) public class Math {
(Line 3) public static int max (int x, int y) {

10

(Line 4) if (x > y) return x;
(Line 5) else return y;
(Line 6) }
(Line 7) }

See Pet. App. 224a-225a.3 To have a computer determine
the larger of two integers, Java programmers do not need
to know any implementing code, which “remains a ‘black
box.’” Id. at 102a. They only have to know this method’s
declaring code. Id.

The java.text package provides a more complex
illustration. Specifically, this package contains a
MethodFormat class for constructing messages to display
to users. The class includes a “format” method that
returns text formatted in a certain way. Its declaring code
is:

package java.text
Class MessageFormat
public static String format(String pattern,
 Object... arguments)

To avoid an error message, programmers must
construct the call for this method using the patterns Sun
created. Those are the same patterns Google copied.
Compare MessageFormat, Java 2 Platform Standard Ed.
5.0 API Specification, http://bit.ly/39y3YIt (last visited
Feb. 18, 2020) with MessageFormat, Android Platform
API Reference, http://bit.ly/2uE8Ixa (last visited Feb. 18,
2020).

3 The first three lines, emphasized in bold, are the declaring code

that explains how to invoke the method, while the (simpler) lines, four
and five, implement the method.

11

For instance, to return this sentence—“At 12:30 PM
on Jul 3, 2053, there was a disturbance in the Force on
planet 7”—a programmer could use this call:

int planet = 7;
String event = “a disturbance in the Force”;
String result = MessageFormat.format(

“At {1,time} on {1,date}, there was {2} on planet
{0,number,integer}.”, planet, new Date(), event);

MessageFormat, Java 2 Platform Standard Ed. 5.0 API
Specification, http://bit.ly/39y3YIt (last visited Feb. 18,
2020). Functionality obviously did not dictate Sun’s
selection of these patterns.

There are many other possible examples, because
Google did not copy a mere handful of methods. The 37
API packages it copied include over six thousand
methods. Pet. App. 129a. True, programmers must
express the calls a certain way to use Sun’s declaring code.
But that is because Sun made a series of creative choices
in composing that code.

In addition to its declaring code, Sun could have
expressed the structure of its Java interfaces in any
number of ways. Sun elected to express Java’s
functionality by dividing it into certain packages, classes,
and methods. How these names and structures link
together represents the result of a distinctly creative
process. Sun did not, for example, have to name any of the
methods as it did. The Federal Circuit’s “Arith.larger” is
but one example. Pet. App. 150a. Sun just as easily could
have called each one something else. Nor did Sun have to
place any given method in a particular class, each of which
it also chose to create.

12

Taken individually, the declaring code for each method
is expressive. Taken together, the thousands of lines of
code Google copied—because it wanted Android
developers to be able to call the exact same methods the
exact same way—undeniably constitute valuable
expression. As the Federal Circuit explained, “[t]he
evidence showed that Oracle had ‘unlimited options as to
the selection and arrangement of the 7000 lines Google
copied.’” Pet. App. 150a.4 Of those “unlimited options,” the
“selection and arrangement” it settled on was ultimately
enormously creative.

In sum, Sun wrote on a blank slate and had countless
ways to compose Java. It made choices about how best to
craft and organize the declarations—how to make them
clear and concise. Those are classically expressive goals.
The resulting work is at the heart of what the Copyright
Act protects.

B. Any suggestion that Google had to copy the
declaring code and organization to make Java work is
incorrect.5 Just as Google (largely) refrained from copying
Oracle’s implementing code for each method, Google was
free to create new interfaces to call the same functionality
performed by those methods using different declarations.
Google actually did write its own versions for many
Android declarations. Google admittedly could have done
the same for the thousands of declarations it copied—just
not “without requiring Java developers to learn thousands
of new calls.” Br. 8. It is simply not the case that Google
copied out of technical necessity.

4 After the first trial, the parties stipulated that Google actually

copied over 11,000 lines of code. Pet. App. 45a.
5 Because the parties agreed not to litigate whether the Java

language itself merits copyright protection, that question was never
at issue at trial or on appeal, and it is therefore not presented here.

13

Google and its amici nevertheless suggest that it would
have been impossible to use Java without the portions
Google copied. That is demonstrably false—there are
real-world counterexamples. To name a few:

First, Oracle itself wrote new declaring code to
perform existing functions. For example, Google copied
declaring code for several methods that together allow
programmers to open a secure internet connection. Java
has included these methods since its original release:

java.net.URL(String spec)
java.net.URL.openConnection()
java.net.HttpURLConnection.getInputStream()

See Pet. App. 126a n.2 (java.net). The corresponding
declaring code is reproduced in the Federal Circuit
appendix. See C.A. No. 13-1021, J.A. A10013-A10028.

With Java 11, Oracle released an alternative—a
different way to accomplish this same function, with
entirely different declaring code:

java.net.http.HttpClient.newHttpClient()
java.net.http.HttpRequest.newBuilder()
java.net.http.HttpRequest.Builder.uri(URI uri)
java.net.http.HttpRequest.Builder.build()
java.net.http.HttpResponse.body()
java.net.URI.create(String str)
java.net.http.HttpClient.send(HttpRequest

request, HttpResponse.BodyHandler<T> handler)

The declaring code is available in the Java Platform
Standard Ed. 11 API Specification, http://bit.ly/38oHAAS.
Among other advantages, this alternative permits
programmers to open a secure connection using a pattern

14

familiar to them, the “builder pattern.” Introduction to the
Java HTTP Client, http://bit.ly/38vysdQ.

This example refutes any contention that Google could
not have written its own interfaces. For Java itself, Sun
and Oracle wrote two different interfaces to do the same
thing—open a secure connection.

Second, Oracle is not the only one capable of writing
its own Java declarations—other entities have done so too.
For instance, the java.util package that Google copied
offers classes to manipulate “collections,” which is Java
nomenclature for a group of objects. As an alternative to
Java’s collections framework, the independent Eclipse
Foundation created its own collections framework and
designed interfaces it thought preferable to Java’s.
Eclipse touts its “[r]ich, [c]oncise and [r]eadable APIs.”
Eclipse Collections, http://bit.ly/38lpfVD (last visited Feb.
18, 2020). Eclipse’s collections APIs perform essentially
the same functions as Oracle’s.

Likewise, Oracle’s CEO testified that a company called
Spring wrote its own interfaces in Java without copying.
As Spring writes, “The Spring team puts a lot of thought
and time into making APIs that are intuitive and that hold
up across many versions and many years.”6 Spring
Framework Overview, http://bit.ly/2OLYd1I (last visited
Feb. 18, 2020). Spring’s solutions are for the Enterprise
Edition of Java (not Standard Edition, as here). But they
demonstrate that there was no technical constraint
preventing Google from creating its own interfaces too.

6 Spring’s APIs drew criticism for being “confusing.” See, e.g.,

Zeljka Zorz, Secure Coding in Java: Bad Online Advice and
Confusing APIs, Help Net Security (Oct. 3, 2017),
http://bit.ly/2ONEQoV. This only confirms that not all APIs are
created equal.

http://bit.ly/2ONEQoV

15

Google’s decision to copy, rather than create, was a
business decision.

C. In all events, Google’s position fails at a more basic
level—trying to separate software interfaces from other
code is unfounded in law and would often be
unmanageable in practice. What counts as a software
interface is hard to define consistently (in theory and
certainly in practice), and there is no basis to attempt to
impose a categorical exclusion; like other creative code,
interfaces merit protection.7

First, there is no textual basis to distinguish
“interfaces” from other computer programs. Code is code.
Java methods and declarations both “instruct[]” a
“computer” to achieve a “certain result” (17 U.S.C. § 101),
and developers can write both in a variety of ways.
Declaring code is just as necessary as implementing code
to cause a computer to produce an output or bring about a
certain result. Declaring code is not a mere “idea” or
“method of operation,” nor is it the “certain result” of a
computer program’s operation.8 It is particular expression

7 Some Google amici acknowledge as much. E.g., Michael Risch

Amicus Br. 30 (citing Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1547
(11th Cir. 1996) for “refusing to hold that interface specification is
uncopyrightable, but instead applying filtration infringement
analysis”).

8 Google’s amicus the Electronic Frontier Foundation (“EFF”) is
therefore incorrect that Java declaring code is “a computer language”
rather than code “written in that language” to “achieve[] a ‘certain
result’ upon execution by the computer.” EFF Amicus Br. 14; cf.
Computer Scientists Amicus Br. 16 (arguing that there is no
distinction between the Java interfaces and the Java language itself).
Moreover, regardless, EFF mistakenly assumes that programming
languages themselves are not copyrightable—a question not at issue,
which, to SAS’s knowledge, no court in this country has decided either

16

that became exceedingly popular with its intended
audience of Java programmers because of its expressive
qualities.

Second, there is no reliable way to distinguish
“interfaces” from other code. Courts are ill equipped to
make the attempt, and Google’s artificial definition of
“software interfaces” admits no principled reason (or way)
to draw the line consistently. Excluding “interfaces”
would be an exercise fraught with difficult line-drawing
and vulnerable to problematic characterizations by
litigants. Rather, Congress and the courts have long
followed the better course, namely, recognizing that as
with other works, the key to the copyrightability of
software is creativity. See, e.g., Feist Publ’ns, Inc. v. Rural
Tel. Serv. Co., 499 U.S. 340, 345 (1991) (“minimal degree
of creativity” to satisfy Section 102(a)); Golan v. Holder,
565 U.S. 302, 328 (2012) (explaining the “idea/expression
dichotomy”); Pet. App. 150a-151a (under the “merger
doctrine,” no copyright protection if there are only a few
ways to express the idea at time of original work’s
creation) (citing Satava v. Lowry, 323 F.3d 805, 812 n.5
(9th Cir. 2003) and Apple Computer, Inc. v. Formula Int’l,
Inc., 725 F.2d 521, 524 (9th Cir. 1984)). The Federal
Circuit correctly applied that precedent.9

way. See supra n.5. For similar reasons, the EFF attacks a
strawperson in arguing that “a ‘certain result’ of a computer
program” is generally uncopyrightable. EFF Amicus Br. 19.
Declaring code delineates how to achieve the certain result and what
form the result may take; it is not the “result” itself.

9 Some amici criticize the court of appeals for supposedly failing
to filter out unprotectable elements before deciding infringement. See
Michael Risch Amicus Br. 6; Intell. Prop. Scholars Amicus Br. 15-16;
Auto Care Ass’n Amicus Br. 13-16. But the court explicitly followed
the “‘abstraction-filtration-comparison’ test formulated by the Second

17

II. COPYING TO REPLACE A COMPETITOR’S
PRODUCT IS NOT “INTEROPERABILITY”

Google and its amici also argue that it is fair use to copy
thousands of lines of code verbatim to develop a competing
commercial product. E.g., Br. 37-50. One of their primary
justifications is “interoperability.” E.g., Br. 41.

But Google’s notion of interoperability is the opposite
of that term’s actual meaning. Android is not
interoperable with Java at all. As the Federal Circuit
observed, there is “unrebutted evidence that Google
specifically designed Android to be incompatible with the
Java platform and not allow for interoperability with Java
programs.” Pet. App. 46a n.11.

That is, Google copied Oracle’s interfaces to make its
Android operating system popular enough to replace
Oracle’s products. Oracle Br. 14-15. In the early 2000s,
Oracle licensed its own Java-based smartphone operating
system that “‘quickly became the leading platform for
developing and running apps on mobile phones.’” Pet.
App. 6a. When Google and Oracle failed to reach licensing
terms, Google created its own competing operating
system. Id. That system was a drop-in replacement for
Java SE on mobile devices. Indeed, the evidence shows
that as Google’s Android phones proliferated, Java SE for
mobile died. Id. at 6a-8a.

By contrast, Lexmark Int’l, Inc. v. Static Control
Components, Inc. illustrates what real interoperability
looks like and how it relates to fair use. 387 F.3d 522 (6th
Cir. 2004). There, plaintiff Lexmark sold toner cartridges
“that contained a microchip designed to prevent Lexmark
printers from functioning with toner cartridges that

Circuit and expressly adopted by several other circuits.” Pet. App.
142a.

18

Lexmark had not refilled.” Id. at 529. Defendant Static
Control Components (“SCC”) copied a “Toner Loading
Program” from Lexmark’s microchip to make its own
microchips compatible with Lexmark’s printers. Id. at
530–531.

The Sixth Circuit held that “pure compatibility
requirements justified SCC’s copying of the Toner
Loading Program” because “if any single byte of the
Toner Loading Program is altered, the printer will not
function.” Id. at 542. In the fair-use inquiry, the first factor
did not necessarily weigh against SCC because “it is far
from clear that SCC copied the Toner Loading Program
for its commercial value as a copyrighted work,” rather
than for its value to permit printer functionality. Id. at 544;
see also, e.g., Sega, 977 F.2d at 1526 (explaining that
copying was “necessary” to achieve “compatibility”);
Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d
596, 606-607 (9th Cir. 2000) (explaining that copying
“produce[d] a product that would be compatible”).10

None of the above is true of Oracle’s Java interfaces.
Google did not copy them to make any hardware or
software physically compatible with other hardware or
software. There is nothing that Google had to design to a
certain specification. Google instead copied the interfaces
precisely because of their “value as a copyrighted work”—
because they are concise and intuitive, and they had

10 Sega and Sony are also distinguishable because each “final

product d[id] not itself contain infringing material” (Sony, 203 F.3d at
606 (citing Sega, 977 F.2d at 1526-1527); see also 203 F.3d at 606
(noting “entirely new object code”)), and the copied code was not
visible to the user (Sony, 203 F.3d at 603; Sega, 977 F.2d at 1525-1526).
Here, as explained supra Part I.A, Android contains infringing
material and the copied code is visible to programmers—its visibility
provided the whole reason to copy it.

19

already proved popular among programmers. Google
elected to copy not because it had to, but because that was
the most direct path to accomplishing its business goal:
attracting developers to Android. The Copyright Act does
not permit copying popular expression simply to make a
different work more appealing.

Contrary to Google’s assertion, there is no “well-
settled understanding that the functions of earlier
computer software may be reimplemented, including by
reusing the limited instructions required to replicate the
commands known to the earlier product’s users.” Br. 14.
Such an “understanding” would subvert the purposes of
the Copyright Act and turn the fair-use inquiry on its
head.

Regardless of their preferred business model,
commercial competitors cannot properly cut corners by
copying to capture the fruits of an original creator’s
labor—here, the base of six million developers that knew
and liked the Java interfaces. The short-cut Google took
was so profitable that even if Oracle receives billions in
damages in this action, it will still have been worth it for
Google to appropriate the Java interfaces for Android.11
That kind of copying is not interoperability, and it is
certainly not fair use.12

11 Similarly, Arista’s CEO, a former Cisco executive, observed

that it would have taken “15 years and 15,000 engineers” to have
competed “in a conventional way.” Adam Lashinsky, An Ex-Cisco
Exec Reflects, Fortune (Mar. 20, 2014, 2:55 PM),
http://bit.ly/2HjCsCe. A jury determined that Arista infringed Cisco’s
command-line interface copyright but found for Arista based on the
scènes à faire doctrine. The case resolved during the appeal.

12 At trial, Google’s fair-use defense centered on the theme that
Android was not a drop-in replacement for Oracle’s Java platform
because “Java SE is on personal computers; Android is on

20

III. MEANINGFUL COPYRIGHT PROTECTION
FOR SOFTWARE INTERFACES IS VITAL TO
THE PROGRESS OF SCIENCE

Software interfaces are not only expressive; they are
expensive to create. And they require investment
throughout the product’s life—from the beginning stages
where viability is uncertain through maintaining
popularity. The revenue SAS Institute earns from
licensing its proprietary software is its lifeblood. That
revenue supports SAS’s substantial reinvestment and
innovative software solutions, sustained over 40 years,
leading to its recognition as one of the most innovative
tech companies in the country. See Press Release, SAS
Honored as a Stevie Award Winner in 2019 American
Business Awards (Jun. 26, 2019), http://bit.ly/2HhDHSz.

Companies like SAS Institute invest the resources
necessary to conceive and develop software because they
can charge customers to use it. A critical part of that
exchange of money for goods and services is that
proprietary software companies can rely on copyright
protection. Unauthorized clones of software interfaces
hurt original creators and ruin the market for (and
incentive to create) their works. If third parties may
simply copy software at will, even “just the interfaces,”
companies will have less incentive to devote resources to
creating software in the first place. Yet at the same time,
copiers would reap rewards for the rote act of copying
without expending resources—and thereby gain an unfair
advantage.

smartphones.” C.A. No. 17-1118, Oracle Opening Br. 68. But Google
knew that it was days away from announcing that “the full
functionality of Android would soon be working on desktops and
laptops, not just on smartphones and tablets.” Id. at 67.

21

Much is at stake. The proprietary software industry is
booming in the United States. See Greg Ip, If the
Economy Booms, Thank Software, Wall St. J. (May 29,
2019), https://tinyurl.com/y5ofk6le; BSA Foundation, The
Growing $1 Trillion Economic Impact of Software (Sept.
2017), https://tinyurl.com/y77xjgke. Over 15,000 American
software publishing companies collectively earned nearly
$270 billion last year.13 Dan Cook, Software Publishing
Industry in the US, IbisWorld, 4 (July 2019),
http://bit.ly/2SFKdI9. The industry grew five percent
annually between 2014 and 2019, a trend that is expected
to continue through 2024. Id. at 7, 10. Software publishers
now employ more than 660,000 workers. Id. at 7. The jobs
are high quality. For example, Fortune Magazine’s list of
best places to work has included SAS for over a decade.

American proprietary software businesses are
innovators as well as drivers of economic growth. Three
such companies took the top three spots on Forbes’s list
of the “World’s Most Innovative Companies” in 2018. The
World’s Most Innovative Companies (2018), Forbes,
http://bit.ly/2SmZmik. American proprietary software
companies have also developed some of the most popular
computer coding languages. Stephen Cass, The Top
Programming Languages 2019, IEEE Spectrum (Sept. 6,
2019, 4:30 PM), http://bit.ly/2OP6OAJ (listing, in addition
to Java, the languages C and C++ developed by Bell
Labs, Swift by Apple, and MATLAB by MathWorks).

In sharp contrast to the American experience, the
software industry in Europe lacks the investor confidence
and energy found in the U.S. In 2019, European “Software

13 Software publishers are businesses that “disseminate licenses

to customers for the right to execute software on their own
computers.” Cook, supra, at 2.

22

as service” (SaaS) companies received $5 billion in venture
investment, compared to $20 billion for U.S. SaaS
companies.14 Philippe Botteri & Maxim Filippov, 2019
Accel Euroscape—The Rise of European SaaS
Continues, http://bit.ly/3bx20JY (last visited Feb. 18,
2020). European software companies also spend
comparatively little on R&D. Of the 250 companies that
generate nearly two-thirds of global business R&D
investment, European software companies represent only
about 8 percent of the total spending by software and
computer-service firms, compared to 77 percent by U.S.
companies. Jacques Bughin et al., Innovation in Europe,
McKinsey Global Initiative, 11 (Oct. 2019),
https://mck.co/31LWLSi.

That is no accident, as SAS Institute can attest. As
recounted below, SAS Institute received contractual
protection for its software interfaces in the U.S., whereas
a European ruling allowed a U.K. company to clone its
software interface in an effort to steal SAS’s customers
around the world. If Google prevails, SAS and other
proprietary software companies will face that prospect in
the U.S. too.15

A. SAS Institute and others expend tremendous
resources to create software. To develop the
groundbreaking SAS System, for example, thousands of
SAS Institute employees spent many millions of hours

14 “Software as service” is a software licensing and delivery

approach where software is licensed to a customer via a subscription.
What is Saas? Software as a Service, Microsoft,
http://bit.ly/3bzEXOE (last visited Feb. 18, 2020).

15 To be sure, factors other than copyright protection affect the
software industry’s strength (e.g., tax policy and patent laws), but
Google cannot dispute that copyright protection is a critical variable
in a software company’s success.

23

over more than four decades. Today, SAS Institute
routinely reinvests 23 to 26 percent of its revenue in
research and development. And SAS is not alone.
Software giants Salesforce and Adobe each spent nearly
$2 billion on research and development in fiscal year 2019.
See Press Release, Adobe Surpasses $11 Billion in
Annual Revenue, 4 (Nov. 29, 2019),
https://adobe.ly/37mYXB0; 2019 Annual Report:
Celebrating 20 Years of Salesforce, 39 (2019),
http://bit.ly/2OP25yX.

Although creating original software (including the
interfaces) is resource-intensive for everyone, companies
recoup their investments in different ways. Some
companies, like SAS Institute, monetize their software
directly by offering commercial licenses in exchange for
payment. Even such traditional software businesses,
however, frequently offer free or low-cost limited licenses
for educational use. Oracle and SAS mix-and-match
models, both commercially licensing software and,
depending on the product and circumstances,
simultaneously making certain software available on
open-source or less expensive terms for particular uses.

Others give their software away or make it widely
available on open-source terms to attract users, then make
money from their customer base. For example, Google
famously offers its software and other content for free,
then reaps billions in advertising revenue. Even Google’s
model, however, circumscribes customers’ uses via
licenses. See, e.g., Pet. App. 7a; Licenses, Android Open
Source Project, http://bit.ly/2SkymQy (last visited Feb.
18, 2020).

The Google model has gained adherents in recent
years, including among Google’s amici, but different
companies will have different business reasons to prefer

24

one model or another.16 Like Google and many of its amici,
SAS Institute must decide which of its software products
should be offered open source, which should be closed
source but intentionally interoperable, and which should
be closed and not made public.

Adopting Google’s position would constrain that
choice. But companies should remain free and encouraged
to pursue proprietary software models. For SAS Institute
and others, the extraordinary investment required to
create cutting-edge software is worth it because copyright
protection allows them to get paid for the works they
create.

B. That ability to recoup the fruits of their engineering
labor is critical to software companies’ capacity to
innovate. And robust copyright protection is essential to
that process—that is “[t]he economic philosophy behind
the” Copyright Clause, namely, “the conviction that
encouragement of individual effort by personal gain is the
best way to advance public welfare.” Mazer v. Stein, 347
U.S. 201, 219 (1954).

Google’s amici disagree. They assert that for software
interfaces, the premise of the Copyright Clause and the
Copyright Act is wrong: copyright protection in fact stifles

16 Whether public policy should favor either model is a question

for Congress. Google’s business model has led to some controversy.
Providing software for “free” to consumers and then monetizing their
data can have grave privacy implications. See Rani Molla, Why Your
Free Software is Never Free, Vox (Jan. 29, 2020),
http://bit.ly/2SDWCMv; see also, e.g., Charlie Warzel & Ash Ngu,
Google’s 4,000-Word Privacy Policy Is a Secret History of the
Internet, N.Y. Times (July 10, 2019), https://nyti.ms/2UKTTne.
Recently, Facebook’s CEO faced a hostile Congressional hearing on
the company’s practice of selling users’ data to third parties. Mark
Zuckerberg Testimony: Senators Question Facebook’s Commitment
to Privacy, N.Y. Times (Apr. 10, 2018), https://nyti.ms/2OOQmjW.

25

innovation. One amicus speculates, for instance, that
copyright protection for software interfaces “discourages
innovation and inhibits competition in the technology
industries.” CCIA Amicus Br. 1-2; see also AAI Amicus
Br. 9; Auto Care Ass’n Amicus Br. 5; Computer Scientists
Amicus Br. 17; Lunney Amicus Br. 5.

1. SAS Institute’s real-world experience shows
otherwise. In dueling litigation in the United States and
Europe, SAS recently felt first-hand the effects of lesser
protections for software interfaces.

SAS distributed a limited version of its flagship SAS
System product under a “Learning Edition” license, which
included “a prohibition on ‘reverse engineering,’ as well as
a restriction requiring use only for ‘non-production
purposes.’” SAS Institute, Inc. v. World Programming
Ltd., 874 F.3d 370, 376 (4th Cir. 2017), cert. denied, 139
S. Ct. 67 (2018). A U.K. company, World Programming
Limited (“WPL”) acquired that limited license, then
violated its terms by cloning the SAS software to create a
competing product. Id. at 382-383.

SAS Institute sued WPL in the U.K. and in the
Eastern District of North Carolina. Id. at 376. The U.K.
High Court referred several questions about the legal
protections for computer programs under European law
to the Court of Justice of the European Union (“CJEU”).
Id. The CJEU ruled that the software interfaces of the
SAS System were not copyrightable and that licensees are
categorically entitled to reverse engineer computer
programs. Id. (discussing Case C-406/10, SAS Institute
Inc. v. World Programming Ltd. (May 2, 2012),
http://bit.ly/2tWiRFa). SAS Institute thus took nothing in
the U.K. action. Id. at 377.

American courts saw the matter differently. The
district court granted summary judgment to SAS

26

Institute on liability for breach of the license agreement
but granted summary judgment to WPL on the copyright-
infringement claim. Id. After a jury trial and trebling of
damages for state-law violations, SAS secured an award of
over $79 million. Id. On appeal, the Fourth Circuit
affirmed the damages award and vacated as moot the
district court’s copyright ruling. Id. at 378-379 (calling the
copyright question “close,” noting the direct conflict
between North Carolina and E.U. public policy, and
observing that “the United States has taken an approach
that is more protective of intellectual property, and North
Carolina courts have taken an approach that is more
protective of the sanctity of contract”).

As detailed above, SAS’s experience illustrates that
copyright protection is critical to incentivize software
companies like SAS and Oracle to invest in creating and
improving their products. The reason proprietary
software companies can invest so much capital in research
and development is because third parties cannot freely
copy their work. As Oracle’s CEO explained at trial: “If
people could copy our software, in other words create
cheap knock offs of our products, we wouldn’t get paid for
our engineering and we wouldn’t be able to continue to
invest at the rate we invest.” C.A. No. 13-1021, J.A. 20454-
20455. The same goes for SAS Institute and other
traditional software companies that form a cornerstone of
the software economy.

While some companies are willing to recoup their
investments by indirectly monetizing software, there is no
reason to force every company to adopt that business
model. Nor is there any reason to believe such a model
would adequately foster development of new and
improved software. After all, the model is relatively new.
The modern proprietary software business in this country

27

has been around twice as long. And that traditional model
is what has produced most, if not all, of the software that
others are clamoring to “reimplement” without
permission.

2. Following the European example would invite
additional negative repercussions. The likely response to
weaker copyright protection is more restrictive license
terms, or secrecy—outcomes that hurt consumers.

For instance, Google’s amici IBM and Red Hat
suggest that, as an alternative to copyright protection,
companies keep their interfaces as trade secrets. IBM
Amicus Br. 1 n.2; id. at 6-7. At the same time, they assert
that software interfaces are essential to interoperability
(and ergo innovation). E.g., id. at 6. IBM and Red Hat thus
urge that copyright protection is unnecessary because
trade-secret protection would suffice.

Those arguments are incompatible. If software
interfaces are critical to interoperability and thus
innovation, then the law should encourage broad
disclosure, not secrecy. That is precisely what a robust
copyright regime achieves. Combined with the
enforcement of licensing restrictions against reverse
engineering, copyright protection allows creators to
disseminate their works liberally without forfeiting all
their value. Google’s position, however, will drive precisely
the opposite outcome.17

17 Nor does patent protection alone suffice. Patents may protect

functional and innovative aspects of a “procedure, process, system,
[or] method of operation” that Section 102(b) clarifies do not receive
copyright protection. But Congress wisely determined that software
authors are entitled to copyright protection for the expression in their
works without undertaking the expense and delay of seeking patent
protection, and regardless of whether their expression discloses a
patentable innovation.

28

That conclusion holds true even for open-source
software. Although many of Google’s amici contend that
software interfaces are routinely available for free use,
like Android, even those uses are subject to licenses. See,
e.g., The Red Hat Enterprise Agreement,
https://red.ht/2SIMz8Y (last visited Feb. 18, 2020);
Mozilla Public License, https://mzl.la/2ONbC9Z (last
visited Feb. 18, 2020); About The Licenses, Creative
Commons, http://bit.ly/39vF6RC (last visited Feb. 18,
2020); Introducing the Permissive License Stack,
Protocol Labs (Feb. 14, 2019), http://bit.ly/2w7yw5e.

Without copyright protection, one cannot generally
hope to enforce license terms—certainly not license terms
that make source code openly available. Any requirement
of contractual privity would be easy to avoid. Without
copyright protection, one party could acquire a license and
breach terms against reverse engineering or unauthorized
copying, then others could use that code with impunity.

Software creators require rights against the world, not
just rights against contracting parties. Google’s position
would eviscerate important protection for software
interfaces, whereas the challenged decision wisely
preserves it. A sea change would be ill-advised and should
be imposed, if at all, only by Congress.

C. Finally, the preceding discussion shows that
Google’s amici are wrong to assert that the Federal
Circuit’s decision will upset the status quo. See, e.g., Small,
Medium, and Open Source Tech. Orgs. Amicus Br. 12-13,
18-21; Software Innovators Amicus Br. 11-22; Microsoft
Amicus Br. 21-22; Gov’t Engineers Amicus Br. 16-19;
Software Freedom Law Center Amicus Br. 16-18; IBM
Amicus Br. 13-18. Those amici do not cite a single case that
allowed copying creative software code where the copier
was trying to create a product that was incompatible with

29

the original; and none of their cases stands for the
proposition that copyright protection does not extend to
genuinely creative source code.18 Instead, they cite cases
involving true interoperability, like Lexmark. Or they
incorporate the misguided argument that software
interfaces embody an idea, not expression, or at best can
be expressed only one way. But for the reasons discussed
supra Part I and as the Federal Circuit recognized, Oracle
faced “unlimited options” in determining how to write the
declaring code. Pet. App. 150a. The Federal Circuit
properly understood the cases amici cite. See, e.g., Pet.
App. 32a, 53a-54a (discussing Sony and Sega); id. at 142a-
143a (discussing Altai).19

In actuality, it is the position of Google and its amici
that would upend copyright law. Congress extended
copyright protection to computer code, and courts have
long determined copyrightability by asking whether the

18 Cf., e.g., Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 810

(1st Cir. 1995) (“Borland did not copy any of Lotus’s underlying
computer code”); Pet. App. 159a-160a (explaining that in Lotus the
commands were not at all creative and, unlike here, “were ‘essential
to operating’ the system”); Sega, 977 F.2d at 1526; Sony, 203 F.3d at
606-607; Altai, 982 F.2d at 696, 702 (no literal copying).

19 Moreover, the district court improperly excluded evidence that
disproves Google’s claim that everyone in the industry believed it was
legal to copy Java APIs because “Sun/Oracle made the Java API
declarations free and open.” C.A. No. 17-1118, Oracle Opening Br. 74-
78. For example, the court sua sponte redacted a sentence from an
industry actor’s email stating that copying the Java declaring code
“makes us [Apache] *already* doing illegal things (in fact, Android
using Harmony code is illegal as well).” Id. at 75. The court also
improperly excluded as hearsay Sun’s statement to the European
Union that “Sun believes that . . . the Android runtime environment[]
[is] an unauthorized derivative work of Java SE.” Id. at 76.
Compounding these errors, the court allowed Google to tell the jury
at closing that these documents did not even exist. Id. at 78.

30

code constitutes creative expression that could have been
written differently. To be sure, courts need guidance
about how to distinguish unprotectable ideas, systems, or
methods from protectable expression in the software
context. See, e.g., SAS Institute, 874 F.3d at 388 (“The
area of software copyrights is a murky one, and federal
courts have struggled with it for decades.”). But the
Federal Circuit assessed “the line between functionality
and creativity,” id., in an exemplary manner.

At bottom, Google asks the Court to craft an atextual
statutory exception for “software interfaces” or to extend
the fair use doctrine to excuse blatantly unfair commercial
copying. The court of appeals correctly rejected Google’s
ill-advised arguments.

CONCLUSION

This Court should affirm.

Respectfully submitted,

 PETER K. STRIS

ELIZABETH ROGERS BRANNEN
 Counsel of Record
DANA BERKOWITZ
DOUGLAS D. GEYSER
JHANIEL JAMES
JOHN STOKES
Stris & Maher LLP
777 S. Figueroa St., Ste. 3850
Los Angeles, CA 90017
(213) 995-6800
elizabeth.brannen@strismaher.com

Counsel for Amicus Curiae

February 19, 2020

	Interest of Amicus Curiae0F
	Summary of argument
	Argument
	I. Software interfaces embody original and creative expression
	II. Copying to replace a competitor’s product is not “interoperability”
	III. Meaningful copyright protection for software interfaces is vital to the progress of science

	Conclusion

