
28

Despite this country’s commitment to fair and
open trials, people are being convicted on the
basis of secret computer code. When neither the

public nor the accused is allowed to look at how the
software operates, it undermines the legitimacy of the
judicial system and can send innocent people to prison
or to their execution.

Forensic software is used in the criminal justice
context to make assertions about the presence and
nature of DNA, to deploy police resources to certain
areas, or to guide bail and sentencing determinations.

Software, however, is far from impartial or infallible.
It is simply a set of instructions to a computer,
programmed by fallible humans or trained on flawed
historical data sets. Errors both intentional and
unintentional are routinely discovered when
independent experts are able to analyze these tools.

This article provides advice for understanding and
confronting software-based evidence in criminal

prosecutions. The advice falls primarily into two
categories. First, from a computer science perspective,
the article describes different types of review that
attorneys and judges might seek in understanding
software-based evidence. Second, from a legal
perspective, the article explains why law and public
policy require disclosure to the public and independent
experts, such as those working with the defense, of the
relevant software source code and other software
development records, including any training data sets.

In particular, the article explains why courts must
reject the idea that a vendor’s purported commercial
interest in trade secrets should override the rights of a
defendant who is at risk of imprisonment or death, or the
public’s right to the open and fair administration of justice.

I. What Information Do
Defense Experts Need to
Evaluate Forensic Software?

A. Source Code and Executables:
What Does It Mean to
Evaluate Software?

Generally, software does what it is programmed to
do, including any bugs and biases programmed into it
by its creators. Everyone has experienced glitchy
software, and everyone has been frustrated when
software does not behave the way they expect it to or
does not give them the options they need. Software
often evolves over time, removing bugs and adding or

Opening the Black Box:
Defendants’ Rights to
Confront Forensic Software

© andriano_cz | AdobeStock

W W W. N A C D L . O R G T H E C H A M P I O N

B Y S T E P H A N I E J . L A C A M B R A , J E A N N A M AT T H E W S ,

A N D K I T WA L S H

removing features in response to
feedback from users or shareholders.

Forensic software is no different in
its vulnerability to bugs or biases, but
the stakes are much higher because the
people most impacted by its operation
have no power over the decision to use
it and very limited opportunities to
review and understand how it works. A
wide variety of forensic software is
deployed in the criminal justice system,
including probabilistic DNA software
like TrueAllele and STRmix, recidivism
risk software like COMPAS, and
predictive policing software like
PredPol, Hunchlab, and Civicscape.

Defendants, defense teams, and the
general public do not typically have access
to the source code that defines these
programs. They do not have information
on how the software was constructed or
the degree to which it is reliable.
Independent, third-party review of the
system is often prohibited by the vendor.
Even requests for expert witnesses to
review the details of the system under
protective order have often been denied.

Because such denials tend to reflect a
lack of understanding of the significance
of independent expert analysis and
public scrutiny, it is important to discuss
different types of review that must take
place to verify or discredit a software
tool. This ranges from testing the “black
box” software that is distributed to

customers, to design and testing
documentation, to documentation of
errors reported and repaired, to source
code level review and more.

Examining the normal user-facing
executable version of software is one
important level of review for expert
witnesses evaluating the suitability of
evidence produced by a software system.
An executable is a series of ones and zeroes
designed to be interpreted by a computer
rather than read by a human. When a user
runs an app, it “executes” that set of
computer instructions and often generates
graphics and an interface with which the
user can interact. Figure 1 shows an
example of the user interface presented by
the executable for LRMix, one
probabilistic genotyping software package.

Directly engaging with the executable
form of the software, like the one depicted
in Figure 1, allows for a limited but
important evaluation of the software.
Experts can run the program using
different inputs and different options
provided by the program and observe
how the results change, which may reveal
important insights into any biases or
assumptions within the program. They
can run the software on test cases similar
to the case at hand to see if the program
reliably reports appropriate outputs.

“Source code” review provides a
much more useful analysis than just
engaging with the executable version of

software. Source code is the human-
readable list of commands (e.g., “if the
user enters X, then do Y,” “repeat trying
possible solutions until one works”)
written by programmers and used to
generate the executable version itself. It is
like being able to see the blueprints for
the house instead of just walking through
it. You get to see the inner workings of
how the house is put together and how
different systems like plumbing, heating,
and lighting function within the house’s
structure. Figure 2 shows an example of
what source code might look like.

Because source code clearly defines
the behavior of the software in all cases
in a human-readable way, analyzing it
provides more and better results than
just running a finite number of test
cases through the executable interface.
Reviewing the source code can both
explain why software is incorrect and
reveal the presence of errors that an
expert would have been unlikely to
guess are present just from using the
executable interface.

Reviewing source code is a careful
and logical process, tracing multiple
possible paths through the program to
identify problems. It is a bit like a
highly technical version of a “build
your own adventure” book where the
reader has to follow all possible
outcomes, such as “If the girl knocks on
the door of the scary house, turn to

W W W. N A C D L . O R G M AY 2 0 1 8

C
O

N
F

R
O

N
T

IN
G

 F
O

R
E

N
S

IC
 S

O
F

T
W

A
R

E

29

Figure 1: Screenshots of the executable of LRMix, a probabilistic genotyping software system.

page 57. But if the girl heads home
without knocking, turn to page 234.”

Figure 2 is an example from the
FST source code where, if the sum of
frequencies is greater than 0.97, a row in
the raceTable is removed. An expert
witness reviewing these lines of source
code has the opportunity to validate
and question the behavior of the
software at a much deeper level than
would be possible by simply using the
program’s executable version.

Software errors are extremely
common. While most mistakes in
software are caught before products are
released, many are not. As software
becomes ever more complex, and
interacts with increasingly complex
systems, errors become harder to
prevent.1 Some bugs are fairly easy to
discover, such as when a bug causes a
program to crash. But for other errors,
the software will appear to function
properly but will output incorrect
results that may escape notice.

To take a famous and venerable

example, the hole in the ozone layer went
undiscovered for years because NASA’s
software was programmed to ignore
outlier data that the original programmers
had assumed was unrealistic.2 A recent
software error in Ireland’s National
Integrated Medical Imaging System
“meant potentially thousands of patient
records from MRIs, X-rays, CT scans, and
ultrasounds were recorded incorrectly.”3

The error involved a misplaced less-than
(<) symbol and may have led to thousands
of unnecessary medical procedures. A
large Australian bank recently admitted a
software error had caused it to fail to
report certain transactions for almost
three years, leading to widespread money
laundering.4 In rare cases, software is
intentionally deceptive, as when
Volkswagen programmed its vehicles to
cheat at emissions tests.5

Forensic technology is not immune
to software errors, and increasing
complexity carries a greater risk of error.6

Independent public scrutiny and testing
is the best way to discover and fix such

problems.7 In criminal cases, the
Constitution guarantees defendants the
right to do so. The Supreme Court said:
“Confrontation is one means of assuring
accurate forensic analysis. …
Confrontation is designed to weed out
not only the fraudulent analyst, but the
incompetent one as well. Serious
deficiencies have been found in the
forensic evidence used in criminal trials.”8

Ideally, law enforcement agencies
that use forensic software should
establish incentives and requirements for
software vendors to be “open source” by
publishing source code and making their
design development information and
data available for public review when they
are considering software systems for
procurement. Vendors could provide
detailed information on the testing
conducted, e.g., how extensive the testing
was, on what populations the software
was tested, and with what results. Vendors
could make executable copies freely
available to enable independent third-
party testing. They could be required to

W W W. N A C D L . O R G T H E C H A M P I O N30

C
O

N
F

R
O

N
T

IN
G

 F
O

R
E

N
S

IC
 S

O
F

T
W

A
R

E

Figure 2: Screenshots of the source code of FST, a probabilistic genotyping software system.

disclose bugs reported against the
software publicly and their response to
those bugs. They could offer bug bounties
for third-party groups that report
problems that can be verified. In general,
subjecting the software to more rigorous
public review during the procurement
phase would allow defense teams to focus
their expert witness review resources not
on general software quality but on the
specifics of how the software applies to
the individual case at hand.

B. Case Study: Probabilistic
DNA Analysis Software

In recent years, software has been
introduced to interpret DNA evidence
that was previously considered too
complex for manual analysis.
Accordingly, it is not possible to
manually verify the results generated
by such software.

For example, “probabilistic
genotyping” software is used when the
evidence is a mixture of contributions
from many people, when only trace
amounts of evidence are collected, or
when the evidence has been substantially
degraded by environmental factors. Such
software generates an estimate of the
probability that the defendant
contributed to the DNA sample, as
opposed to some unknown person.
Different methodologies may produce
radically different results, even in the
same case. In one such example,
Commonwealth v. Foley,9 three different
government experts testified that the
probability that another Caucasian could
be the contributor instead of the
defendant was 1 in 13,000; 1 in 23
million; or 1 in 189 billion. That is the
difference between having a thousand
other people in a city who might have
contributed to the DNA instead of the
accused, versus no one else on Earth.

Defendants are being sent to prison
or to their death based on the results of
such proprietary software,10 even in the
absence of other physical evidence,
despite substantial, open questions about
its accuracy and reliability. In 2016, the
President’s Council of Advisors on
Science and Technology (PCAST) issued
a report emphasizing the need for
independent review of probabilistic DNA
programs, in part to determine “whether
the software correctly implements the
methods” on which the analysis is based.11

Consider, for example, the case of
Mayer Herskovic. He was convicted in
2013 for beating up a black student, Taj
Patterson, in Brooklyn with a group of
Hasidic men. Police recovered a DNA
sample from Patterson’s sneaker and

forensic software developed in-house
determined that it was more likely than
not that the remainder belonged to
Herskovic. Herskovic had no criminal
record. He voluntarily provided a DNA
sample against the advice of his lawyers
believing that it would help him. There
was no surveillance footage. The victim
and those who witnessed the crime did
not identify Herskovic at trial. It is
reasonable to question whether the DNA
testing software used is even accurate in
distinguishing members of a genetically
insulated population such as Hasidic
Jews, who may be more likely to share
common ancestors, and therefore DNA.
Despite all this, Herskovic was convicted
and his defense team had no access to
the source code or development records
of the software that generated the
primary evidence against him.

In fact, source code review has
routinely revealed critical flaws in DNA
analysis software. A Forensic Statistical
Tool (FST) was developed in 2010 by
New York City’s Office of the Chief
Medical Examiner (OCME). For years,
OCME fought any independent review
of FST’s source code and other software
development materials, even under a
protective order. In a 2016 criminal
case,12 a federal judge ordered OCME to
turn over FST’s source code for review.

In that initial review of FST source
code, defense expert Nathan Adams found
many problems. A secret function (see
Figure 2) was present in the software,
tending to overestimate the likelihood of
guilt. The actual functioning of the
software, revealed upon inspection of the
source code, did not use the methodology
publicly described in sworn testimony
and peer-reviewed publications. Adam’s
review was conducted under protective
order, but in late 2017, in response to
filings by ProPublica and Yale’s Media
Freedom and Information Access Clinic,
the judge unsealed these findings as well
as the entire FST source code, which
ProPublica then published online.13

The FST source code, now available
online, contains over 30,000 lines of
code, the equivalent of roughly 550
pages of dense technical information. In
Adams’ initial review, he could only
scratch the surface of what is possible to
determine with source code level review.
Similarly, when STRmix, commercial
software that is replacing FST in New
York, was analyzed by independent
researchers, they found programming
errors that created false results in 60 out
of 4,500 cases in Queensland, Australia.14

The problems caused by
nondisclosure are especially acute in the

context of the latest generation of
probabilistic DNA analysis programs
because there is no objective baseline
truth against which they may be
evaluated. These programs analyze
samples that are thought to have DNA
from multiple sources (such as a swab
from a handbag or weapon)15 according
to the assumptions programmed into
them, and then they produce a ratio of
statistical probability of a match.

Because the output of newer DNA
analysis tools depends on speculative
assumptions,16 different products like
STRmix and TrueAllele provide
drastically different estimates from one
another — a discrepancy that can mean
the difference between pointing toward
guilt or innocence.17 As a result, these
programmed assumptions, and the way
they are coded into the software, must
be reviewed at the source code level for
reliability and accuracy.

C. Beyond Code:
Testing Materials, Revision
History, and More

When programmers develop
software, they do more than write the
source code. They generate internal
testing plans and record the results of
those tests. Programmers also keep a
database of bug reports and revisions.

The revision control history of a
system reveals when code has been
introduced to improve the system or fix
reported bugs or problems. It is a well-
known issue in software development that
introducing a fix for one problem can
introduce new problems. Experts for both
the prosecution and the defense should be
able to review the exact software version
used for testing in a particular case and
consider the relevance of flaws present in
that version and how those flaws may or
may not have impacted the results.

Testing plans and the results of
internal testing would allow defense
teams to investigate whether a particular
system has been used successfully in
cases similar to the case at hand. For
example, if the case involved DNA from
multiple contributors in the same family
or DNA from a specific subpopulation,
it would be appropriate to review the
test results to see if the tool has proven
effective in those particular scenarios. As
one concrete example of accuracy that
varies for different demographics,
Buolamwini and Gebre evaluated three
commercial gender classification
systems and showed that while the error
rates for lighter-skinned males was only
0.8 percent, the error rates for darker-
skinned females was up to 34.7 percent.18

W W W. N A C D L . O R G T H E C H A M P I O N32

C
O

N
F

R
O

N
T

IN
G

 F
O

R
E

N
S

IC
 S

O
F

T
W

A
R

E

W W W. N A C D L . O R G M AY 2 0 1 8

C
O

N
F

R
O

N
T

IN
G

 F
O

R
E

N
S

IC
 S

O
F

T
W

A
R

E

33

D. Unique Considerations for
Machine Learning Systems

“Machine learning” is a technique
whereby software developers do not
write out all of the operations for their
software, but instead enable the system
to infer rules from a set of training data
that has been tagged — by humans —
with “correct” answers or classifications.

This approach relies on having a large
body of data. Developers manually classify
the data and then invite the machine
learning algorithm to learn how to apply
those classifiers. The machine learning
algorithm looks for any patterns present
in the training set that are effective at
predicting past decisions. For example, a
machine learning system might conclude
from historical data that women are less
likely to commit violent crimes.

The magic and the danger of these
systems are that it is not obvious what
criteria the program is looking at to make
its determinations. As an example,
researchers trained a machine learning
classifier to differentiate between photos
of dogs and wolves.19 They took a training
set of photos of dogs and wolves and
labeled them correctly by hand. They used
half of the photos to train the machine
learning classifier. When tested on the
other half of the photos, the system
matched the manual classification with a
high degree of accuracy. However, when
the researchers configured the system to
provide explanations of the decisions,
they could see that the system decided that
the best way to determine the difference
between dogs and wolves was the presence
of snow in the image. If there was snow in
the image, then the system classified the
image as a wolf and if not, the system
classified the image as a dog.

The dog/wolf classifier illustrates
three important points.

First, a machine learning tool is quick
to leap to a proxy (like snow) that is easy
to see, instead of making more difficult
distinctions (between dog or wolf). In the
context of the criminal justice system, this
might mean using a zip code (which
might be highly correlated with race or
socio-economic status) as a proxy for the
likelihood of recidivism.

Second, a machine learning tool
trained on a particular data set might be
completely useless as a tool to analyze new
information. In the dog/wolf example, if
one gave that system photographs of dogs
and wolves against a blank background, it
would have no predictive power at all
because it was trained on an artifact of the
data set (snow) and not on actual features
of dogs and wolves.

Third, the use of biased training data

is one way to introduce errors into
software systems that might not be visible
to experts even at the level of source code
review. The researchers in this case skewed
the decision of the system by using a
training set in which wolves were
photographed in the snow. Only with
access to the training data does the
problem become apparent.

E. What Information Is
Needed to Evaluate a
Machine Learning System?

When machine learning tools are
used to make judgements about the legal
rights of people, it is critical for the public
and defense experts to have the ability to
dig into the software’s decision-making
process and challenge its accuracy and
fairness. One good place to start is
providing information on the training
data used to build systems of this kind.

Disclosing the specific data available
to the decision-making program is
important for transparency and
accountability. As in the dog/wolf
example, it can expose serious problems
with extending the use of the tool to
make judgments about data that was not
part of the training set.

When the system is using protected
attributes like race or gender, then it is
especially important to understand the
impact of that information on decisions. It
is also important to remember that there
are many proxies for protected attributes
that may not seem particularly sensitive.
For example, in some areas, zip code can
be an effective proxy for race or
socioeconomic status. The richer the data
set used (social media posts, consumer
reports, etc.), the easier it is to make
decisions based on sensitive attributes even
if the system can honestly claim not to be
looking at them directly.

Machine learning algorithms are
fundamentally based on the idea of using
historical data to inform future
decisions. This makes perfect sense
because the past is all people have to
learn from. However, it is important to
remember that people do not always
want the future to be like the past. The
past is often unjust and flawed, and if the
machine learning algorithm is trained on
past information, it will only perpetuate
the same injustices and flaws.

For example, as the Human Rights
Data Analysis Group discovered in its
experiment using PredPol predictive
policing software fed with drug arrest
history from Oakland, California, the
algorithm only reinforced police bias in
reporting when making its predictions.
Due to inequalities in which

neighborhoods were being policed in the
first place, there was an inequality in the
data being produced and input into the
training set. Locations that were heavily
patrolled by police, like lower income
communities of color, were over-
represented in the police report data that
was being used to train the algorithm. As
a result, the algorithm learned not about
patterns in actual crime, but about
patterns in how police record crime, and
used these patterns to predict and deploy
patrols to the same areas overrepresented
in the police data — reinforcing and
hiding biased police practices by using a
supposedly “impartial” software program.

Programmers should not create
software systems that perpetuate the past’s
mistakes into the future and then call
them “logical” or “unbiased” decisions
made by a computer. Programmers must
understand the limits of the tools they
build and not apply them outside the
range of these limits. Allowing defense
teams to examine and question the
assumptions built into software tools used
in the criminal justice system is an
important step in the right direction.

People know what it feels like to use
beta software and be frustrated by its bugs
and inconsistencies. The process of
reporting and fixing bugs improves
software over time, but software
manufacturers often resist such criticism
when it impacts their sales. When a person
is accused of committing a crime, the
criminal justice system cannot allow bugs
to go undiscovered or unremedied when
they have the potential to adversely impact
that person’s life or liberty. Defendants
should have the opportunity to challenge
the evidence against them and
meaningfully argue that a particular
conclusion based on high-level historical
statistics does not apply in their case.

Professionals in computing and
software engineering have developed
best practices for assessing the quality
and reliability of software products. It is
important that these standards be
rigorously followed in developing
forensic software. Manufacturers should
be made to follow best practices for
software development, including
documentation of requirements, design,
testing, version control, and error
reporting. Also, there are best practices
for algorithmic accountability and
transparency. In 2017, the Association
for Computing Machinery’s U.S.
and European policy arms published a
joint statement on algorithmic
transparency and accountability that
included seven primary principles: (1)
awareness, (2) access and redress, (3)

accountability, (4) explanation, (5) data
provenance, (6) auditability, and (7)
validation and testing.20

F. What to Ask for in Discovery
The following outline lists types of

software materials that defense teams
should request, along with a
brief definition and issues to consider.
It is not an exhaustive list. If
manufacturers of forensic software do
not produce or maintain some of these
materials, this suggests they are not
following professional software
development best practices, which
would in itself be a substantial cause
for concern about the quality and
accuracy of the resulting system.

1. Executable Program:
Working program as run
by users of the system

a. Materiality/Usefulness:
i. Ability to find flaws in

system through systematic
testing

ii. Ability to identify sensitivity
to parameters not well
defined or routinely recorded
when documenting results
used for evidence

iii. Software manufacturers
less protective of executable
program

b. Challenges/Issues:
i. Even though made

available to all users of the
system, it can still be
difficult for defense teams
and independent experts
to get access (expensive to
buy, only available to law
enforcement or other
restrictive terms of use)

2. Design Documentation:
Documentation describing the
intended operation of the
system from high-level
requirements documents to
low-level system plans

a. Materiality/Usefulness:
i. Can identify flaws in the

underlying premise of
system, not just errors in
implementation

b. Challenges/Issues:
i. May not match actual

working system

3. Test Plans and Results:
Information about what testing
the software developers did to
validate the correct operation
of the system

a. Materiality/Usefulness:
i. Opportunity to identify

when the system has not
been tested in particular
cases or on particular
demographics

ii. Opportunity to identify
patterns of errors found
and fixed

b. Challenges/Issues:
i. Testing conducted by the

program development
team is not independent
testing because of the
team’s bias towards
showing that the system
does work rather than
pointing out potential
flaws

ii. Important to complement
this with independent and
adversarial testing

4. Bug reporting/
resolution database:
Reports of errors discovered by
end users or in testing along
with responses (source of error,
how and when fixed)

a. Materiality/Usefulness:
i. Provides information on

the type and frequency
of errors and how the
software vendor has
responded

ii. Patterns of past errors
often suggest errors that
still remain

iii. Opportunity to consider
whether error identified
in the past was present in
the system when it was
used to produce evidence
in a specific case

b. Challenges/Issues:
i. Vendors may not maintain

a formal bug reporting/
resolution database.
Requiring that they do so
in the procurement phase
of software would be a
good idea

5. Revision Control History:
Detailed information about
when and how the software has
changed (e.g., when features are
added or flaws found and fixed)

a. Materiality/Usefulness:
i. Provides insight into how

the software has evolved

ii. Opportunity to ask
whether evidence in a
particular case would
have been the same with
previous or future
versions

6. Training Data Used:
For machine learning/expert
systems, software may be
trained using a specific set of
training data

a. Materiality/Usefulness:
i. Opportunity to identify

potential biases built into
the system

ii. Opportunity to ask whether
specific case at hand is well-
covered by the training set

b. Challenges/Issues:
i. Training data often contains

private information about
individuals, and access
to individually identifiable
information must be
carefully managed

7. Source Code:
Human readable listing of
all instructions followed

a. Materiality/Usefulness:
i. Step by step details of how

the system works

ii. Opportunity to spot
mistakes/errors

b. Challenges/Issues:
i. Some decisions made by

the system may not be
spelled out in source code
(e.g., classifications made
by machine learning
classification)

ii. It is important to determine
if the version of source code
being reviewed is the same
as that used to produce
evidence (see revision
control information)

W W W. N A C D L . O R G T H E C H A M P I O N34

C
O

N
F

R
O

N
T

IN
G

 F
O

R
E

N
S

IC
 S

O
F

T
W

A
R

E

iii. Software manufacturers are
especially protective of
source code and will likely
try to assert a trade secret
privilege. Many of the other
artifacts suggested can be a
good place to begin as well
as provide unique informa-
tion to complement source
code access.

II. The Law Requires
Disclosure of Forensic
Software Code and
Documentation

When the government chooses to
use evidence created or manipulated by
forensic software, it must disclose to the
defense the software’s source code and
other software development records to
comply with the Constitution’s guarantee
of fairness and due process and the strong
public interest in overseeing the integrity
of court proceedings. Yet the prosecution
often seeks to hide such information by
invoking a private party’s commercial
interest in keeping it secret.

At most, a company seeking to
protect a trade secret could seek a
protective order from the court
ensuring that the information would
not be used for competitive advantage
or disclosed outside the defense team.
Such an order may issue only if the
company can show that its financial
interest in keeping the source code
secret somehow outweighs the interests
of the public and the defendant, but this
should be the rare exception and not the
rule. Such disclosures are common in
civil litigation where the stakes are
merely economic and the chance of
misappropriation is higher because the
parties are direct competitors.

Criminal defendants deserve better
access to relevant technical information
about the evidence against them.
Certainly they do not deserve less access
than civil litigants.

A. Due Process Requires
Disclosure of Forensic
Program Source
Code and Software
Development Materials

Generally, U.S. criminal court
proceedings are open to the public
under both Supreme Court precedent
and common law tradition.21 The
Constitution guarantees an accused the
right to review and meaningfully
confront the prosecution’s evidence, and
prohibits the prosecution from shifting

its burden of proof to the defense.22

Due process entitles the defense to
review the prosecution’s evidence.
Defendants have both a constitutional
and statutory right to receive and review
the evidence against them. When that
evidence is the product of proprietary
forensic software, the source code must
be produced to the defense under both
the Fourteenth Amendment guarantee of
due process and the Sixth Amendment
right to a fair trial and to “be informed of
the nature and cause of the accusation; to
be confronted with the witnesses against
him; [and] to have compulsory process
for obtaining witnesses in his favor.”23

State evidence codes also typically
require the prosecution to produce
relevant evidence to the defense prior to
trial. The default rule is production,24

and commercial business interests in
maintaining a purported trade secret
cannot justify abridging these important
constitutional and statutory rights.

Otherwise, when the prosecution’s
key forensic evidence is based on software
code and program methodology that is
hidden from the defense, the defendant’s
fate could be determined by a black box
that the defense has no opportunity to
examine or challenge. As discussed above,
forensic software has no special immunity
from the bugs and mistakes that plague
software in other fields. Probabilistic
DNA-matching programs are only one
example of a forensic technology that
embodies potentially flawed assumptions
that could cause the wrong person to be
imprisoned or executed.

Forensic software should be
disclosed in criminal prosecutions and
subjected to rigorous independent testing
to discover any program flaws or bugs
that can be exploited. Without access to
the program’s source code, methodology,
design documents, testing plans, training
data and bug reports, there is no way for
the defense to meaningfully confront the
assumptions embedded within the
program or the accuracy, functionality,
and credibility of its outcomes.

Exclusion is the only appropriate
remedy for nondisclosure. The justice
system cannot tolerate convictions
based on secret evidence.25 To do so
would undermine the common law
right to access criminal proceedings26

and the constitutional rights to due
process and a fair trial.27

Due process prohibits burden shiing
to the defense. Due process dictates that “a
State must prove every ingredient of an
offense beyond a reasonable doubt, and …
may not shift the burden of proof to the
defendant. …”28 At the same time, “a

presumption which, although not
conclusive, [has] the effect of shifting the
burden of persuasion to the defendant,” is
likewise unconstitutional.29

Thus, any framework that requires
the defense to make a showing of
materiality before granting access
to the forensic software materials
runs contrary to these basic
constitutional guarantees.

B. Common Practice and Equity
Require Disclosure of Trade
Secret Information When It Is
Material to the Defense

As a general rule, when the
prosecution seeks to hide evidence by
claiming a trade secret privilege, it has to
prove that the evidence qualifies as a
trade secret.30 Even if the government
meets that burden, courts should still
require disclosure, but may impose a
protective order if the government
proves one is warranted.31

It is so common in civil cases to
disclose trade secrets under protective
orders that many federal district courts
have adopted a model protective order
for the disclosure of source code to
opposing counsel and experts retained by
the party who agree to be bound by the
order.32 Disclosure subject to a protective
order is routinely required even when the
parties are direct competitors with an
interest in profiting from the proprietary
information of the other.33

Yet prosecutors consistently urge
courts to divert from this established
practice and deprive criminal
defendants of access to forensic
software even subject to a protective
order. This higher barrier to discovery
is backwards. It should be easier for a
defendant trying to defend his life and
liberty to access and assess forensic
software, as compared to a party with a
mere economic interest.

C. The Prosecution Typically
Cannot Establish That
Disclosure Subject to a
Protective Order Would
Cause Harm

When disclosure is sought under a
protective order, the court weighs the risk
of harm from disclosure subject to the
protective order, rather than presuming
disclosure to the public.34 It is very
unlikely for harm to result from disclosure
to attorneys and retained experts subject
to a protective order.35 Thus, even in the
rare case when a company’s economic
interest is found to outweigh the public’s
interest in transparency, access and the fair
administration of justice, source code and

W W W. N A C D L . O R G T H E C H A M P I O N38

C
O

N
F

R
O

N
T

IN
G

 F
O

R
E

N
S

IC
 S

O
F

T
W

A
R

E

software development documentation
should at the very least still be made
available to defense teams subject to a
protective order, not withheld completely.

Conclusion

Technology has the potential to make
the administration of justice fairer, but it
has the opposite effect if it is shielded
from inspection and accountability.
Computer software can be flawed or
embody dangerous biases that will harm
innocent people unless defendants and
the public are granted the opportunity to
conduct independent testing. Educating
defense attorneys and the courts about the
need for transparency and accountability
in the review of forensic software used to
generate evidence is the only way to
safeguard clients from a technologically
obscured miscarriage of justice.

Notes
1. Roger A. Grimes, Five Reasons Why

Software Bugs Still Plague Us, CSO Online
(July 8, 2014), https://www.csoonline.com/
article/2608330/security/5-reasons-why
-software-bugs-still-plague-us.html.

2. Michael King & David Herring,
Research Satellites for Atmospheric
Sciences, 1978-Present, Serendipity and
Stratospheric Ozone (Dec. 10, 2001),
https://earthobservatory.nasa.gov/Features/
RemoteSensingAtmosphere/remote
_sensing5.php.

3. Jack Power, Software Company
Behind HSE Scan Glitch Begins
Investigation, IRISH TIMES (Aug. 5, 2017),
h t t p s : / / w w w. i r i s h t i m e s . c o m / n e w s /
ireland/irish-news/software-company
- b e h i n d - h s e - s c a n - g l i t c h - b e g i n s
-investigation-1.3178349.

4. Allie Coyne, CBA Blames
Coding Error for Alleged Money
Laundering, itnews (Aug. 7, 2017),
h t t p s : / / w w w. i t n e w s . c o m . a u / n e w s /
cba-blames-coding-error-for-alleged
-money-laundering-470233.

5. Sonari Glinton, How a Little Lab in
West Virginia Caught Volkswagen’s Big Cheat,
NPR Morning Edition (Sept. 24, 2015),
http://www.npr.org/2015/09/24/44305367
2/how-a-little-lab-in-west-virginia-caught
-volkswagens-big-cheat.

6. Andrea Roth, Machine Testimony, 126
YALE L.J. 1972, 1983-93 (2017); Christian
Chessman, A ‘Source’ of Error: Computer
Code, Criminal Defendants, and the
Constitution, 105 CAL. L. REV. 179 (2017).

7. Edward J. Imwinkelried, Computer
Source Code: A Source of the Growing
Controversy Over the Reliability of
Automated Forensic Techniques, 66 DEPAUL L.
REV. 97 (2016).

8. Melendez-Diaz v. Massachusetts,
557 U.S. 305 (2009).

9. Commonwealth v. Foley, 38 A.3d 882
(Pa. 2012).

10. L. Kirchner, Thousands of Criminal
Cases in New York Relied on Disputed
DNA Testing Techniques, PROPUBLICA, Sept.
4, 2017, https://www.propublica.org/
article/thousands-of-criminal-cases-in
- n e w - y o r k - r e l i e d - o n - d i s p u t e d - d n a
-testing-techniques.

11. PRESIDENT’S COUNCIL OF ADVISORS ON

SCIENCE AND TECHNOLOGY (PCAST), REPORT TO

THE PRESIDENT: FORENSIC SCIENCE IN CRIMINAL

COURTS: ENSURING SCIENTIFIC VALIDITY OF FEATURE-
COMPARISON METHODS 78 (2016) [hereinafter
PCAST Report], https://obamawhitehouse
.archives.gov/sites/default/files/microsites/
ostp/PCAST/pcast_forensic_science_
report_final.pdf.

12. See United States v. Johnson, 15-CR-
565 (VEC) (S.D.N.Y. June 7, 2016).

13. L. Kirchner, ProPublica Seeks
Source Code for New York City’s Disputed
DNA Software, PROPUBLICA, Sept. 25, 2017,
https://www.propublica.org/ar t icle/
p r o p u b l i c a - s e e k s - s o u r c e - c o d e - f o r
-new-york-city-disputed-dna-software; L.
Kirchner, Federal Judge Unseals New York
Crime Lab’s Software for Analyzing DNA
Evidence, PROPUBLICA, Oct. 20, 2017,
https://www.propublica.org/article/federal
- judge-unseals-new-york-cr ime-labs
-software-for-analyzing-dna-evidence;
Forensic Statistical Tool Source Code,
h t t p s : / / g i t h u b . c o m / p r o p u b l i c a /
nyc-dna-software.

14. David Murray, Queensland Authorities
Confirm ‘Miscode’ Affects DNA Evidence in
Criminal Cases, COURIER MAIL (Mar. 20, 2015),
http://www.couriermail.com.au/news/
queensland/queensland-authorit ies
-confirm-miscode-affects-dna-evidence-in
-criminal-cases/news-story/833c580d3f1c
59039efd1a2ef55af92b.

15. See People v. Collins, 49 Misc.3d 595,
613-616 (Kings Co. Sup. Ct. 2015).

16. See, e.g., Paolo Garofano, et al., An
Alternative Application of the Consensus
Method to DNA Typing Interpretation for
Low Template-DNA Mixtures, Forensic Sci.
Int’l: Genetics Supp. Series 5, at
e422–e424 (2015).

17. PCAST Report at 79 n.212. See, e.g.,
People v. Hillary, Court No. 2015-15
(N.Y. Sup. Ct. St. Lawrence Co. 2016),
http://www.northcountrypublicradio.org/
assets/files/08-26-16DecisionandOrder
-DNAAnalysisAdmissibility.pdf; see Jesse
McKinley, Oral Nicholas Hillary Acquitted in
Potsdam Boy’s Killing, N.Y. TIMES, Sept. 28, 2016,
http://www.nytimes.com/2016/09/29/nyreg
ion/oral-nicholas-hillary-potsdam-murder
-trial-garrett-phillips.html; see also PCAST, An
Addendum to the PCAST Report, at 8,

https://obamawhitehouse.archives.gov/
sites/default/files/microsites/ostp/PCAST/

W W W. N A C D L . O R G M AY 2 0 1 8

C
O

N
F

R
O

N
T

IN
G

 F
O

R
E

N
S

IC
 S

O
F

T
W

A
R

E

39

About the Authors
Stephanie J. Lacambra is the Criminal

Defense Staff Attor-
ney at the Electron-
ic Frontier Founda-
tion. Prior to joining
EFF, she worked as
a Federal Defender
in San Diego and a
Public Defender in
San Francisco, han-

dling cases ranging from drug and alien
smuggling to attempted murder.

Stephanie J. Lacambra
Electronic Frontier Foundation
San Francisco, California
415-436-9333

stephanie@eff.org

Jeanna Matthews is an Associate Professor
of computer science
at Clarkson Universi-
ty. Her research is
in computer secu-
rity, algorithmic
accountability and
transparency. She is
a 2017-18 Fellow at
Data and Society

and a member of the Executive Commit-
tee of ACM U.S. Public Policy Council.

Jeanna Matthews
Clarkson University
Potsdam, New York
315-268-6288

jnm@clarkson.edu

Kit Walsh is a Senior Staff Attorney
at the Electronic
Frontier Founda-
tion, working on
free speech, net
neutrality, coders’
rights, and other
issues that relate to
freedom of expres-
sion and access to

knowledge. Prior to joining EFF, she led
the civil liberties and patent practice
areas at Harvard’s Cyberlaw Clinic.

Kit Walsh
Electronic Frontier Foundation
San Francisco, California
415-436-9333

kit@eff.org

EMAIL

EMAIL

EMAIL

(Continued on page 66)

Hughes & Richard Torres, Mixing It Up: Legal
Challenges to Probabilistic Genotyping
Programs for DNA Mixture Analysis, THE

CHAMPION, May 2018 at 12.
3. See Ford & Krane, supra note 1.
4. ISO/IEC/IEEE, Systems and Software

Engineering — Vocabulary, ISO/IEC/IEEE
24765:2010(E), vol. 2010. at 1–418, 2010.

5. Id.
6. Id.
7. Id.
8. Black box software is “a system or

component whose inputs, outputs, and
general function are known but whose
contents or implementation are unknown
or irrelevant.” Id.

9. White box software is “a system or
component whose internal contents or
implementation are known.” Id.

10. About ACM (2017), https://
www.acm.org/about-acm (last visited June
28, 2018).

11. Press Release, Association for
Computing Machinery U.S. Public
Policy Council (USACM), USACM Issues
Statement on Algorithmic Transparency
and Accountability (2017), https://
www.acm.org/articles/bulletins/2017/
january/usacm-statement-algorithmic
-accountability (last visited June 28, 2018);
Press Release, Association for Computing
Machinery U.S. Public Policy Council

(USACM), Statement on Algorithmic
Transparency and Accountability (2017),
https://www.acm.org/binaries/content
/ a s s e t s / p u b l i c - p o l i c y / 2 0 1 7 _ u s a c m
_statement_algorithms.pdf (last visited
June 28, 2018).

12. N. Diakopoulos & S. Friedler,
How to Hold Algorithms Accountable,
MIT TECHNOLOGY REVIEW (2016), https://
www.technologyreview.com/s/602933/
how-to-hold-algorithms-accountable (last
visited June 28, 2018).

13. C.D. Steele & D.J. Balding, Statistical
Evaluation of Forensic DNA Profile Evidence, 1
ANNU. REV. STAT. ITS APPL. 361–384 (2014).

14. Scientific Working Group on DNA
Analysis Methods, Guidelines for the
Validation of Probabilistic Genotyping Systems
(2015); M.D. Coble et al., DNA Commission of
the International Society for Forensic Genetics:
Recommendations on the Validation of
Software Programs Performing Biostatistical
Calculations for Forensic Genetics Applications,
25 FORENSIC SCI. INT. GENET. 191–197 (2016).

15. Institute of Electrical and
Electronics Engineers, IEEE Std 1012-2012 -
IEEE Standard for System and Software
Verification and Validation (May 2012);
Institute of Electrical and Electronics
Engineers, IEEE Std 829-2008 - IEEE
Standard for Software and System Test
Documentation (July 2008).

16. M.W. Perlin, Second Declaration
of Mark W. Perlin in Response to
Defense Motion to Compel (2016),
https://www.cybgen.com/information/
newsroom/2016/apr/files/B-Perlin-second
-declaration.pdf (last visited June 28, 2018).

17. D. Balding, likeLTD (likelihoods for
low-template DNA profiles), https://sites
.google.com/site/baldingstatisticalgenetics/
software/likeltd-r-forensic-dna-r-code (last
visited June 28, 2018).

18. See Ford & Krane, supra note 1. n

W W W. N A C D L . O R G T H E C H A M P I O N66

W
H

A
T

 D
O

E
S

 S
O

F
T

W
A

R
E

 E
N

G
IN

E
E

R
IN

G
 H

A
V

E
 T

O
 D

O
 W

IT
H

 D
N

A
?

pcast_forensics_addendum_finalv2.pdf; P.
Garofano et al., An Alternative Application of
the Consensus Method to DNA Typing
Interpretation for Low Template-DNA
Mixtures, Forensic Sci. Int’l: Genetics Supp.
Series 5 at e422–e424 (2015).

18. Joy Buolamwini & Timnit Gebru,
Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender
Classification. Proceedings of the Fairness,
Accountability and Transparency
Conference, New York, N.Y. (2018),
h t t p : / / p r o c e e d i n g s . m l r. p r e s s / v 8 1 /
buolamwini18a/buolamwini18a.pdf.

19. Marco Tulio Ribeiro, Sameer Singh &
Carlos Guestrin, ‘Why Should I Trust You?’:
Explaining the Predictions of Any Classifier. In
Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining (KDD ‘16). ACM,
New York, N.Y. 1135-1144 (2016). DOI:
https://doi.org/10.1145/2939672.2939778,
https://dl.acm.org/citation.cfm?id=2939778.

20. S. Garfinkel, J. Matthews, S.
Shapiro & J. Smith, Toward Algorithmic
Transparency and Accountability, 60
Communications of the ACM at 5,
10.1145/3125780 (Sept. 2017).

21. Richmond Newspapers, Inc. v.

Virginia, 448 US 555, 580, n.17 (1980)
(upholding presumption that criminal trials
be open to the public and recognizing the
common law tradition “that historically
both civil and criminal trials have been
presumptively open”).

22. U.S. CONST. amend. VI, amend. XIV.
23. Id.
24. See Bridgestone/Firestone Inc. v. Sup. Ct.

(1992) 7 Cal.App.4th 1384, 1393 (finding that a
court is required to order disclosure of a trade
secret unless, after balancing the interests of
both sides, it concludes that under the
particular circumstances of the case, no fraud
or injustice would result from denying
disclosure); Agricultural Labor Relations Bd.
(ALRB) v. Richard A. Glass Co., 175 Cal.App.3d
703 (1985) (allowing the trade secret privilege
to stand would tend to work an injustice on
the agricultural workers involved).

25. See U.S. CONST. amend. VI (“In all
criminal prosecutions, the accused shall
enjoy the right to a speedy and public trial
… and to be informed of the nature and
cause of the accusation; to be confronted
with the witnesses against him; to have
compulsory process for obtaining witnesses
in his favor …”); Richmond Newspapers, 448
U.S. at 580 (First Amendment requires
criminal trials be open to the public).

26. Richmond Newspapers, 448 U.S. at 580
n.17 (recognizing the common law tradition

“that historically both civil and criminal trials
have been presumptively open”).

27. U.S. CONST. amend. XIV; State v.
Schwartz, 447 N.W.2d 422, 427-28 (Minn.
1989) (court reasoned that prejudicial failure
to disclose information such as forensic
methodology on the basis that the method
was a trade secret provided grounds for
excluding the evidence because “access to
the data, methodology, and actual results is
crucial so a defendant has at least an
opportunity for independent expert review”).

28. Patterson v. New York, 432 U.S. 197,
215 (1977).

29. Sandstrom v. Montana, 442 U.S. 510,
524 (1979); see generally Mullaney v. Wilbur,
421 U.S. 684 (1975).

30. See Evid. Code § 1061(b)(1); see
Bridgestone/Firestone, 7 Cal.App.4th at 1393
(the party claiming the privilege has the
burden of establishing its existence).

31. See Evid. Code § 1061(b)(4).
32. See http://www.cand.uscourts.gov/

model-protective-orders.
33. Benham, 71 WASH. & LEE L. REV. at

2240-2241.
34. Coca-Cola Bottling Co. of Shreveport v.

Coca-Cola Co. 107 F.R.D. 288, 293 (D. Del. 1985).
35. See United States v. United Fruit Co.,

410 F.2d 553, 556 (5th Cir. 1969) (cert.
denied) (disclosure is less likely when made
to a party that is not a competitor). n

Confronting Forensic Software
(Continued from page 39)

About the Author
Nathaniel Adams is a Systems

Engineer at Foren-
sic Bioinformatics,
a company that
reviews cases
involving forensic
DNA testing.

Nathaniel Adams
Forensic Bioinformatic Services
Fairborn, Ohio
937-426-9270

adams@bioforensics.comEMAIL

