

No. 2013-1021 & No. 2013-1022

IN THE

UNITED STATES COURT OF APPEALS
FOR THE FEDERAL CIRCUIT

ORACLE AMERICA, INC.,

Plaintiff-Appellant,

v.

GOOGLE INC.,

 Defendant-Cross Appellant.

ON APPEAL FROM THE UNITED STATES DISTRICT COURT FOR THE NORTHERN
DISTRICT OF CALIFORNIA, CASE NO. 10-CV-3561 HON. WILLIAM H. ALSUP

CORRECTED BRIEF OF SCOTT MCNEALY AND BRIAN SUTPHIN
AS AMICI CURIAE IN SUPPORT OF REVERSAL

STEVEN T. COTTREAU
CLIFFORD CHANCE US LLP
2001 K STREET, NW
WASHINGTON, DC 20006
(202) 912-5000
Steve.Cottreau@
CliffordChance.com

Counsel of Record

February 22, 2013 Counsel for Amici Curiae

 - i -

CERTIFICATE OF INTEREST

Pursuant to Federal Rules of Appellate Procedure 26.1 and 47.4, Counsel for Amici

Curiae certifies the following:

1. The full name of every party or Amici Curiae we represent is: Scott
McNealy and Brian Sutphin

2. The name of the real party in interest represented by us is: None.

3. All parent corporations and any publicly held companies that own 10

percent or more of the stock of the party or amicus curiae represented
by us are: None.

4. The following law firm and partners or associates have appeared or

are expected to appear before this Court on behalf of the Amici Curiae
are:

 STEVEN T. COTTREAU
CLIFFORD CHANCE US LLP
2001 K STREET, NW
WASHINGTON, DC 20006
(202) 912-5000
Steve.Cottreau@
CliffordChance.com
Counsel of Record

Dated: February 22, 2013 By: /s/ Steven T. Cottreau
STEVEN T. COTTREAU

 - ii -

TABLE OF CONTENTS

Page

CERTIFICATE OF INTEREST ...i

TABLE OF AUTHORITIES ... iii

INTEREST OF AMICI CURIAE .. 1

ARGUMENT ... 1

I. OVERVIEW OF JAVA FRAMEWORK .. 2

A. Brief History Of Java ... 2

B. How Java Works .. 5

II. JAVA IS CREATIVE AND INNOVATIVE ... 8

A. Designing An Elegant Set Of Java Packages Was Central
To Java’s Success ... 8

B. Google’s Employees and Other Individuals Have
Recognized the Elegance of Java’s design ... 11

C. The Selection Naming And Organization Of Java’s
Packages (APIs) Are Unique And Creative ... 13

D. Designing a Java Package .. 14

III. JAVA LICENSES ITS TECHNOLOGY TO ADVANCE THE
WRITE ONCE, RUN ANYWHERE PRINCIPLE .. 20

A. GPLv2 License ... 20

B. Commercial License ... 21

C. Specification License ... 22

IV. GOOGLE’S SUBVERSION OF WRITE ONCE, RUN
ANYWHERE ... 23

 - iii -

TABLE OF AUTHORITIES

Application Fundamentals, App Components - Android Developers 24

David Bank, The Java Saga, WIRED MAGAZINE, Dec. 1995 3

Joshua Bloch, Bumper-Sticker API Design, InfoQ, Sept. 22, 2008 12

Joshua Bloch, How to Design a Good API & Why it Matters, Javapolis Conference,
Nov. 21, 2006 .. 11

Elizabeth Corcoran, Java Jumps Into the ‘Net’; Proponents Say New Software
Language Could Herald Computing Revolution, THE WASHINGTON POST, Dec.
10, 1995 ... 4, 5

DateFormat (Java 2 Platform SE 5.0), API Specification 17

BRUCE ECKEL, THINKING IN JAVA 1 (4th ed. 2006) .. 12

Lee Gomes, Made in the shade; ‘Java’ stirs up renewed interest in Sun Micro, THE
DALLAS MORNING NEWS, Dec. 18, 1995. .. 3

James Gosling, Bill Joy and Guy Steele, The Java Language Specification, Preface
to the First Edition, July 1996 ... 22

Java 2, Standard Edition Specification, June 25, 2003 ... 23

java.text (Java 2 Platform SE 5.0), API Specification .. 15

JCP Procedures - JCP 2.9: Process Document, Java Community Process 11

Learn About Java Technology, Java.com ... 4

Ibrahim Levent, Beautiful API Design, DZone, Nov. 26, 2008 12

Patrick McKenna, Netscape Creates Java Conference, NEWSBYTES, Dec. 20, 1995
 ... 5

NSTimeZone Class Reference, Mac Developer Library 17, 18

TimeZoneInfo Class (System), Windows Phone Dev Center 18

TIOBE Programming Community Index for February 2013, TIOBE Software: The
Coding Standards Company .. 4

INTEREST OF AMICI CURIAE

Amici Curiae Scott McNealy and Brian Sutphin (“Sun Executives”) are

former executives of Sun Microsystems, Inc. (“Sun”), who were integrally

involved in the development of the Java platform. Sun, which was founded in

1982, developed the world’s most innovative products and services, which have

been used to power the world’s key computing systems. Through its commitment

to shared innovation, community development, and open source leadership, Sun

quickly became a leader in the sale of computer workstations. In the 1990s, Sun

developed Java, which is an object-oriented, platform-independent, multithreaded

programming environment. Java revolutionized computer programming and

quickly became the foundation for the World Wide Web and numerous computing

and networking devices.

Amicus curiae Scott McNealy co-founded Sun and was the Chairman of its

Board of Directors from 1984 to 2010, President from December 1984 to April

1999 and from July 2002 to April 2004, and Chief Executive Officer from

December 1984 to April 2006. In these roles, Mr. McNealy worked to make Sun

an innovative leader in the information-technology industry.

Amicus curiae Brian Sutphin joined Sun in 1994 and from 2004 through

2010 was Sun’s Executive Vice President of Corporate Development and Alliances.

Mr. Sutphin’s responsibilities included mergers and acquisitions, creating

 - 2 -

corporate-level alliances with key global technology companies and establishing

policies and requirements of Sun’s inbound technology licensing.

In 2010, Oracle Corp. acquired Sun and the Sun Executives moved on to

other projects. While the Sun Executives do not have any current involvement

with Oracle or Java, they share a vital interest in protecting Java’s creative legacy.

Because of their close involvement with the creation of Java, the Sun

Executives are compelled to submit this brief to make clear that Java was the result

of the exceptional creative efforts by a team of developers and to safeguard Sun’s

legacy. The Sun Executives urge this Court to safeguard those individuals’ legacy,

which the opinion below has placed in doubt.1

1 Pursuant to Federal Rule of Appellate Procedure 29(a), both parties have

consented to the filing of this brief. Moreover, no party to this case or its
counsel authored this brief in whole or in part, or no person other than amici
and their counsel made a monetary contribution to its preparation or submission.
See Fed. R. App. P. 29(c)(5).

ARGUMENT

The Sun Executives are concerned that the district court did not fully

appreciate the creativity involved in developing the Java Platform or the countless

choices that Sun made in developing it. First, the district court’s opinion assumes

that each of the 7,000 lines of source code that Google copied could only be

written in a small number of ways. In creating Java, however, the Sun

development team could have used an unlimited number of syntax permutations to

develop the same functionality that is generated by the Java Packages. Second, the

district court’s opinion refused to grant copyright protection to the Java Packages’

highly creative organization, which elegantly interrelates classes and methods. In

denying copyright protection to the copied elements of Java, the district court has

upset the expectations of those that created the Java platform, who thought that the

source code that they painstakingly developed would receive the same copyright

protections afforded to any other source code (or literary work). Third, the district

court’s opinion undermines the financial investment that Sun made in developing

Java and the licensing framework that the Sun Executives created to enforce their

unique “Write Once, Run Anywhere” philosophy. Had Sun known a priori that the

result of investment of millions of dollars and years of development time would

not receive copyright protection, it never would have invested as heavily in Java.

 - 2 -

I. OVERVIEW OF JAVA FRAMEWORK

A. Brief History Of Java

Prior to the release of the Java platform, the dominant programming

languages permitted developers to use some common rules and vocabularies in

writing programs for different types of computer systems and devices. But,

because each type of computer systems or device was unique, a program written in

one of these languages had to be written in a manner that was specific to a

particular system or device. Thus, although a programmer could write programs

for multiple systems or devices in the same language, the program itself would

have to be re-written (or “ported”) in a manner that was specific to each particular

platform or device. For example, an application written in the programming

language C and designed for the Microsoft Windows system would not work on an

Apple computer or on any other non-Windows device.

Porting for multiple systems, however, was often prohibitively expensive

and massively inefficient. To port, a developer would have to assign a team of

programmers to take a completed program and change its programming source

code so that it would work on a new platform. Even if a developer was willing to

incur the expense, the porting process took valuable time and thus slowed the

process of making software available for new platforms and devices. As a result,

 - 3 -

developers often chose to write software for systems with the largest number of

users. Early efforts to develop a cross-system platform failed.

Innovators at Sun realized they needed to start “really [bearing] down and

[starting] to help customers solve the problems they were having in migrating

away from mainframes.” 2 A team of Sun computer engineers led by James

Gosling worked feverishly on a computer programming platform with the intent

that it would revolutionize how people would program. They developed Java, a

breakthrough platform that permitted developers to “Write Once, Run

Anywhere.” Software developers could use Java to write an application once

using Java and have it run on a variety of different computing systems and devices.

Java’s “Write Once, Run Anywhere” promise was an inspirational creative

breakthrough in software development. Unlike programs written on predecessor

programming platforms, a program written and developed once with the Java

development platform would work on a very large selection of systems and

devices, thus freeing developers from the high costs of porting their applications.3

Central to Java’s success was its inclusion of a collection of creatively pre-

written programs bundled into “packages” (also known as APIs or Application

2 Lee Gomes, Made in the shade; ‘Java’ stirs up renewed interest in Sun Micro,

The Dallas Morning News, Dec. 18, 1995.
3 David Bank, The Java Saga, Wired Magazine, Dec. 1995, available at

http://www.wired.com/wired/archive/3.12/java.saga.html?topic=&topic_set=.

 - 4 -

Programming Interfaces) that allowed programmers to code quickly and

efficiently. The choice of what packages to create, the creativity of the naming of

those packages, and creativity in the organization of those packages are at issue in

this case.

Due to its elegant and robust design, the Java platform has proven an

enormous success. The Java platform has evolved and thrived for over 15 years

while competing against myriad other notable development platforms. At present,

more than 9 million developers worldwide create software with Java, making Java

the most popular programming platform.4 In fact, Java gained the top position in

programming platforms more than 10 years ago, in 2002.5 Java’s success not only

advanced “Write One, Run Anywhere,” but it was the forefront of the World Wide

Web revolution of the 1990s, “bring[ing] the Internet to a new level of experience

for all users.”6 Near the time of Java’s initial release, Netscape Communications

said it “[had] never seen interest in a programming language grow so fast as it has

4 Learn About Java Technology, Java.com, http://www.java.com/en/about/ (last

visited Feb. 16, 2013).
5 TIOBE Programming Community Index for February 2013, TIOBE Software:

The Coding Standards Company, http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html?date=jan2013 (last visited Feb. 16, 2013).

6 Elizabeth Corcoran, Java Jumps Into the ‘Net’; Proponents Say New Software
Language Could Herald Computing Revolution, The Washington Post, Dec. 10,
1995.

 - 5 -

with the phenomena of Java.”7 The Washington Post had noted before its release

that “[to] many technologists, describing Java as a programming language is like

dismissing iron ore as just another type of rock—rather than a material that can be

used to create a new age of tools. What’s exciting about Java isn’t what it is, but

what people hope to do with it.”8 Realizing that desktop computers were a sliver of

the potential systems that Java could innovate, Java's creators also released

specialized platforms to fully exploit what were, at the time, unconventional. For

servers and mainframes, an Enterprise Edition was released and Sun pioneered

mobile phone development with its Micro Edition. When Google made Android

available for free, Oracle was effectively competing with a free version of its own

program.

B. How Java Works

The Java platform relies upon five primary elements: (i) a Java programming

language with which developers can write applications; (ii) a core set of programs

(interchangeably called the Java Packages, Java APIs, or Java Class Library)

which developers could use to speed the creation of new applications; (iii) a Java

compiler, which translates the code written by the developer into Java bytecode;

7 Patrick McKenna, Netscape Creates Java Conference, Newsbytes, Dec. 20,

1995.
8 Corcoran, supra note 6.

 - 6 -

(iv) a Java virtual machine (“JVM”), which translates Java bytecode into

instructions comprehensible to the underlying computing platform or device; and

(v) a Java development kit (“JDK”), a collection of programming tools released by

Oracle. If the Java Class Library and a JVM are present on a system or device, the

system is said to carry a “Java runtime environment” and that system then can run

applications written in Java. Of these four primary elements of Java, only

Google’s copying of the Java Packages (or APIs) is at issue in this case.

1. Java Language. The Java language constitutes the “bare bones” of

the Java framework. The language provides the syntax, grammar, and vocabulary

of the language to permit a software developer to write programs in Java code that

will run in a Java runtime environment.

2. Java Packages. Java provides an extensive set of packages organized

into a library—those packages are at issue in this case. The Java Packages are an

extensive set of ready-to-use programs that can serve as helpful “building blocks”

for Java developers. Sun developed these pre-built packages to allow

programmers to accomplish programming tasks ranging from the simple (such as

basic math functions) to the complex (such as providing computer security and

network access functions). In other words, Java developers need not “reinvent the

wheel” for many desired programming tasks that were commonly used by a wide

 - 7 -

variety of computer programs. Rather, the creators of Java included these

functions in the Java Packages.

Although there are many intricacies to how the Java Packages interact with

one another and within themselves, a package is generally subdivided into classes

or interfaces, which are further subdivided into methods. Each method contains

the discrete programming functions utilized by developers. For example, the

java.net package provides 40 classes and interfaces to implement networking

applications (i.e., connecting to the internet and other computer networks). It

contains 440 methods that range from determining if the computer or device is

connected to a locally networked computer, to retrieving the IP address (i.e., the

address box) of another computer connected to the Internet.

3. Java Compiler. The Java compiler reads and interprets the source

code written by a developer, including its declaring code to the Java Packages, and

generates a more compact Java byte-code. This byte-code, which cannot be read

directly by most Java programmers, is what is distributed to end-users to run on

different computing platforms.

4. Java Virtual Machines (JVM). JVMs are the final link to Java’s “run

anywhere” platform. Installed on a user’s computer or device, the JVM is a piece

of software that translates the Java byte-code to enable it to run on each particular

computer or device. In short, to run Java programs on a particular computer

 - 8 -

platform, the JVM must be customized for that platform. Once a JVM exists for a

platform, all computers and devices using that type of platform can run programs

written in Java. Today, JVMs have been developed for almost every computer

operating system (including Microsoft Windows, Apple MacOS X, Linux variants,

and UNIX variants) and an expanding number of mobile devices (such as

Blackberry).

5. Java Development Kit (JDK). The JDK is the culmination of all the

elements of the Java platform. Released by Java’s creators, the JDK provides all

the necessary programs and tools to develop and test their Java applications. The

JDK includes the Java Packages, the Java Compiler and the JVM. By providing all

the pieces of the Java platform, the widespread distribution of the JDK was

fundamental to promoting Java’s “Write Once, Run Anywhere” vision.

II. JAVA IS CREATIVE AND INNOVATIVE

A. Designing An Elegant Set Of Java Packages Was Central To
Java’s Success

Java’s success rested in large part upon its elegant and creative set of

packages that Sun designed and developed. As noted above, these packages

provide a lengthy and creative set of pre-existing programs that made it much

easier for Java programmers to quickly write programs and intuitively grasp and

learn the Java platform. Indeed, Java’s well-crafted packages have been an

 - 9 -

important contributing factor to the success that Java has enjoyed since its

inception.

Merely offering a programming platform in which developers could build

cross-system applications would not have been enough to get developers to use it.

Instead, the platform needed an elegantly designed and arranged package library

that would resonate with programmers’ sensibilities and that would be intuitive to

their thinking. A creatively developed, labeled and organized set of packages was

essential to the spread of a new computer platform because it makes the platform

easier to learn and to teach. Although the conventions and ordering of the

packages may read like gibberish to non-programmers, an elegantly designed set of

packages is a creative exercise that is apparent to everyday professional

programmers—in the way that an English professor can recognize a unique

arrangement of words as great poetry or a renowned architect can see lines in a

blueprint as the next iconic silhouette in a city skyline. The function is not the

key—instead, success is found in the artful selection of elements: in Java, this

includes the elegant naming and creative arrangement of the Java Packages.

As a result, Sun spent an enormous amount of time and effort creating an

original hierarchy of packages organized into a distinctive library and unique

classes. To attract developers to invest the time to learn the platform, the selection

and then naming and organization of the packages had to be easy to understand, to

 - 10 -

memorize, and to master. Indeed, because Java’s packages are so appealing to

Java developers, a community devoted to the development of new packages and

the evolution of existing packages was established. This process of package design

took many years to develop and the development continues to this day. The result

has been a monumental creative success.

The development of the Java Packages is not a casual effort that took a few

weeks to perfect. Sun/Oracle took years to refine the Java Packages. The process

to cultivate a package can take over a year from start to finish. There are four

major steps: (i) Initiation; (ii) Draft Releases; (iii) Final Release; and (iv)

Maintenance. During the initiation phase, a new specification is requested by an

accredited community member, which in turn must be approved by an executive

committee established by Oracle. Experts then draft the specification and submit it

to the Oracle’s Program Management Office, where it is posted online for public

feedback. The specification is revised, utilizing the public feedback, and reposted

to the public repeatedly during a set period. Once that period is over, a ballot is

taken, and if passed, the final release is published. The implementation of the final

release must pass a battery of tests, most importantly compatibility with the

 - 11 -

existing Java Packages. At that point, a specification becomes an official

component of the Java Packages.9

B. Google’s Employees and Other Individuals Have Recognized the
Elegance of Java’s design

Google’s own Principal Engineer (who previously worked as Senior Sun

Engineer on the Java project), Joshua Bloch, has stressed the importance of the

creative process that leads to creation of an elegant package library. He has

explained, “APIs can be among a company’s greatest assets.”10 He stresses that

integral to the process of package design is naming.

The names that you come up with for classes and for
methods sort of—they’re talking to you …. They should
come out nicely. They should work nicely together. You
know, good names can drive development.’11

As a result, he notes that “Names matter a lot.” He concludes that if a programmer

creates elegant names, “then your code will kind of read like prose.”12 He has

stressed the critical element of literary creativity in naming and organizing

9 JCP Procedures - JCP 2.9: Process Document, Java Community Process,

http://www.jcp.org/en/procedures/jcp2_9 (last visited Feb. 18, 2013).
10 Joshua Bloch, How to Design a Good API & Why it Matters, Javapolis

Conference, Nov. 21, 2006 available at http://www.infoq.com/presentations/
effective-api-design.

11 Id.
12 Id.

 - 12 -

packages: “API design is an art, not a science. Strive for beauty, and trust your

gut.”13

As a leading Java educator has explained, “What has impressed me most as I

have come to understand Java is that somewhere in the mix of Sun’s design

objectives, it seems that there was a goal of reducing complexity for the

programmer.”14 Indeed, countless programmers have noted the creative design of

Java and its packages. As one programmer has put it,

When I first began to program in Java, I loved the Java
language a lot. I used to program in Pascal, Delphi,
Visual Basic and C but Java was very different and
elegant. In addition to its language structure and features,
its API set was very special. With its beautiful and
aesthetic design, programming in Java is a pleasure. I
don’t have this feeling when I program in other
languages. To feel pleasure or pain is also valid when we
use API sets. There are many API sets we use in any
development cycle coming from different frameworks or
libraries. API beauty depends on designer knowledge
and design capability (say artistic skill).15

As a result of the creative selection, naming and organization of these packages,

Java has become one of the most enduring programming platforms ever conceived

due to its creative design and elegant organization.

13 Joshua Bloch, Bumper-Sticker API Design, InfoQ, Sept. 22, 2008, http://www.

infoq.com/articles/API-Design-Joshua-Bloch.
14 Bruce Eckel, Thinking in Java 1 (4th ed. 2006).
15 Ibrahim Levent, Beautiful API Design, DZone, Nov. 26, 2008, http://java.dzone.

com/news/beautiful-api.

 - 13 -

C. The Selection Naming And Organization Of Java’s Packages
(APIs) Are Unique And Creative

Java’s package library design is unmistakably highly creative and the

product of a rigorous design process. The development of the Java Packages goes

far beyond mere function—they instead share many similarities with developing

literature and architectural design. While a novel may have an object of stirring

certain thoughts or emotion in a reader (a function), a novel or poem is ultimately a

highly creative process that requires careful consideration to a variety of literary

concerns, including structure, word choice, and pacing. Likewise, though a

building has functional components like doors and windows, the overall

arrangement of its elements is recognized as a highly creative medium of

expression. Similarly, though a programming library contains functional

components, the naming and organization of the functions—like the arrangement

of architectural functions—is a highly challenging and creative process. The result

is an intuitive, easy-to-comprehend, original scheme of Java packages.

The role of the Java Packages is to provide a library of shortcuts to allow the

developers to quickly and efficiently create their own applications in Java. But,

much like a haiku poem can express a particular thought, a package should also

concisely relay the concepts and role of that program in an elegant and clever

way—a way that avoids forcing the developer to resort to a manual to understand

it. Good packages are intuitive and resonate with programmers. Consequently,

 - 14 -

creative naming, organization, and classification of the packages have been

fundamental to the success of the Java platform.

Java’s architects had to decide what packages would be created, and in those

packages, how many classes, and within those classes how many methods would

ultimately be available to developers. Moreover, for every package, class, and

method that made the cut, Java’s creators then had to name each element,

determine the types and order of their parameters, and determine how to arrange

them. Over time, Java’s developers evolved existing packages and added new

ones. Like characters in a long running episodic television drama, the packages

became increasingly interrelated and more sophisticated while new ones were

introduced.

D. Designing a Java Package

An examination of the “java.text” package from Java Standard Edition 5.0 is

illustrative of the myriad creative choices the Java package creators faced. The

java.text package contains 25 classes, 2 interfaces, and hundreds methods to handle

text, dates, numbers, and messages in a manner independent of natural human

languages to allow the flexibility of adding localization for new localizations at

 - 15 -

any time.16 Figure A sets forth an overview of this Package’s structure and Figure

B below lists each of the methods within this Package.

16 java.text (Java 2 Platform SE 5.0), API Specification, http://docs.oracle.com/

javase/1.5.0/docs/api/java/text/package-summary.html (last visited Feb. 18,
2013).

 - 16 -

Java’s creators initially needed to determine whether to include a java.text

package in the first place. Just as a novel’s author would need to determine the

desirability of including a particular plot line, determining whether to include a

package was a difficult creative choice. That, however, is just the start of

thousands of creative choices that go into drafting a Java Package library. Java’s

architects then had to determine how long the package would be, what elements to

include, and where to end the package. Moreover, the packages, classes, and

methods had to have easy to grasp names that were creatively unique. Beyond the

names, Java’s developers had to make creatively appealing organizational

choices. For example, organizing the java.text package alphabetically or

chronologically were possibilities, but not creative choices that Java’s creators

made. The names of the classes and the way they were organized could not be so

lengthy that it would be inefficient for programmers to use regularly, yet the labels

still needed to creatively convey the purpose of the package. Moreover, Java’s

architects needed to consider how java.text would be interrelated with the broader

Java Package library. Java.text is utilized by 8 other packages, including packages

dedicated to fonts, user interfaces, and images.

A building architect must consider the interaction of the elements in a

creative work to expresses an aesthetic perspective beyond function, so to did

Java’s architects carefully design the naming and arrangement of the elements

 - 17 -

within the Java Packages to reflect their creative design philosophy. All of these

choices are creative choices—not choices that in any way alter the functions of the

packages available on the Java platform. For instance, the selection of names of a

package's elements are not purely functional choices--they are creative ones. In

Java, a developer setting the time zone in an application would first go into the

“DateFormat” class of the java.text package and declare the “setTimeZone”

method.17 By just looking at their labels a developer will intuitively know that the

DateFormat class can be used to format a date, and then use the setTimeZone

method to set the actual time zone for that developer’s application. But creators of

competing computer programming environments can accomplish this same

function in an unlimited number of different creative ways.

Indeed, a quick examination of other programming environments shows that

creators of other development platforms provide the same functions with wholly

different creative choices. For example, Apple’s iOS platform devotes an entire

class to set the time zone in an application-- the “NSTimeZone” class.18 Unlike

Java’s placement of that package in the java.text package, Apple put it in

17 DateFormat (Java 2 Platform SE 5.0), API Specification, http://docs.oracle.com/

javase/1.5.0/docs/api/java/text/DateFormat.html (last visited Feb. 18, 2013).
18 NSTimeZone Class Reference, Mac Developer Library, https://developer.apple.

com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSTim
eZone_Class/Reference/Reference.html (last visited Feb. 18, 2013).

 - 18 -

its ”Foundation” framework. (A framework is Apple’s terminology for a structure

conceptually similar to Java’s “package.”). Apple’s NSTimeZone class contains

numerous methods to manipulate time zones, including, retrieving time zones with

abbreviations (“timeZoneWithAbbreviation”), retrieving time zones with names

(“timeZoneWithName”), and setting the default time zone

(“setDefaultTimeZone”).19 It was Apple’s creative decision to organize the time

zone programs in this manner, select time zone programs that it believed was

desirable to programmers and label the time zone programs as they chose.

Likewise, Microsoft provides similar functionality, but with an entirely

different structure, naming scheme, and selection. In its Windows Phone

development platform, Microsoft stores its time zone programs in the

“TimeZoneInfo” class in its “System” namespace (Microsoft’s version of a

“package” or “framework”).20 Within that organizational structure, Microsoft has

programs to, among other things, convert time from different time zones

(“ConvertTime”) or determine whether a particular date and time in a particular

time zone is ambiguous (“IsAmbiguousTime”).21

19 Id.
20 TimeZoneInfo Class (System), Windows Phone Dev Center, http://msdn.

microsoft.com/en-us/library/windowsphone/develop/system.timezoneinfo(v=vs.
105).aspx (last visited Feb. 18, 2013).

21 Id.

 - 19 -

As demonstrated by two other major players in the mobile phone operating

system industry, the organizational conventions, naming schemes, and selection of

programs associated with the concept of using time zones are creative. The

ultimate choice for a particular design among an infinite number of alternatives

reflects the expression of the Java package designer’s judgment as to what design

would resonate with programmers and make the Java platform elegant and easy to

learn and memorize.

Apple and Microsoft made different creative choices from those found in

Java. This difference in creative choices exists amongst Sun/Oracle, Apple,

Microsoft, and countless other developers of programming environments--with

only one notable exception: Google’s undisputed and intentional copying of Java’s

creative choices at issue in this case. While Sun/Oracle, Apple, and Microsoft

invested considerable resources and valuable time making creative decisions for

their respective programming libraries, Google did not: it merely copied desirable

packages from the Java platform.

The art of package library design stretches beyond the level of individual

packages. Because Java programmers need to be familiar with the Java Package

library, and because many packages are interrelated, significant attention was paid

to the totality of the Java Package library: the selection and arrangement of those

packages must be just as appealing and elegant as each individual

 - 20 -

package. Making these thousands of creative choices was a massive creative

task. Judging from the success of Java (and Google’s efforts to copy the naming

and organization of Java’s packages), the creative choices by Java’s architects

were brilliant.

III. JAVA LICENSES ITS TECHNOLOGY TO ADVANCE THE WRITE
ONCE, RUN ANYWHERE PRINCIPLE

Since its inception, Sun licensed Java to a broad range of technology firms.

Java is licensed in three principal ways: under the Gnu Public License (“GPL”) v2

License, a commercial license, and the Specification License. These licenses seek

to advance the “Write Once, Run Anywhere” principle by ensuring code

compatibility and preventing fragmentation. Like the Java Packages, Java’s

licensing program is essential to maintaining the integrity of the Java framework

and safeguarding Java’s “Write Once, Run Anywhere” promise.

A. GPLv2 License

The GPLv2 License is an “open source” license. Although commonly

perceived to be “free,” the GPLv2 License is an enforceable agreement where the

licensee’s consideration is not monetary, but rather a non-monetary contribution.

Under the GPLv2 License, a licensee is required to contribute back to the broad

Java community all improvements or changes to the licensed Java technology,

guaranteeing that those improvements benefit all users and can be used by all other

 - 21 -

licensees. Moreover, this license ensures that changes or improvements cannot be

misappropriated for the benefit of a single developer or firm. Thus, as a practical

matter, the GPL License ensures compatibility because no GPL licensee has a

different or more advanced code-base than any other. The GPLv2 License thus

promotes the aim of cross-platform compatibility.

B. Commercial License

Oracle (and previously Sun) also licenses Java under a commercial license,

for a fee. For a variety of reasons, many commercial enterprises may choose not to

use GPL code in their products and thus opt for a commercial license. The list of

commercial Java licensees is long and includes some of the world’s foremost

technology companies, including Sony, Cisco, RIM, Nokia, Amazon, eBay,

Panasonic, LG, Samsung, VISA, and GE. Oracle and a licensee negotiate the

terms of each commercial license. In return for a license fee, a licensee is entitled

to use all the implementation code and add and modify the code as it pleases. The

licensee is also entitled to use the Java trademark and brand. Unlike the GPLv2

License, none of the improvements or alternations have to be passed on to the

public at large. But, pursuant to these commercial licenses, a licensee’s Java

implementation must meet Java’s compatibility standards to ensure continuing

promotion with the “Write Once, Run Anywhere” principle.

 - 22 -

C. Specification License

Oracle (as did Sun) also licenses Java under a Specification License. The

Specification License permits licensees to create independent implementation of

the Java Specification, including all of the Java Packages that are at issue in this

case. However, unlike the Commercial License, a Specification licensee is not

entitled to use Sun/Oracle’s reference code implementations or the Java trademark

and brand. The licensee must write its own code implementing the Java

Specification. That new implementing code must pass a compatibility test and

must produce the same “specified” end result so that a program written using the

standard Java platform would “compute the same result on all machines and in all

implementations.”22

The Specification License is central to preserving Java’s “Write Once, Run

Anywhere” philosophy. The relevant terms of the license specify that the license

is granted on the conditions that the Licensee:

(i) fully implements the Spec(s) including all its required
interfaces and functionality; (ii) does not modify, subset,
superset or otherwise extend the Licensor Name Space,
or include any public or protected packages, classes, Java
interfaces, fields or methods within the Licensor Name
Space other than those required/authorized by the
Specification or Specifications being implemented; and

22 James Gosling, Bill Joy and Guy Steele, The Java Language Specification,

Preface to the First Edition, July 1996 available at http://titanium.cs.berkeley.
edu/doc/java-langspec-1.0/j.preface.html (last visited on Feb. 13, 2013).

 - 23 -

(iii) passes the [Technology Compatibility Kit] … for
such Specification.”23

To superset the specification is to exceed the capabilities of the standard Java

specification such that the added superset components would not work with the

standard Java specification. To subset the specification is to omit certain

capabilities of the original specification so that any program designed under the

full standard Java specification will not operate with new the subset specification.

By restricting Specification Licenses in these ways, Sun (and later Oracle) ensured

that all Java code developed pursuant to a Specification License would still be

interoperable by being able to run on systems with a standard Java Virtual Machine

installation (and thus is faithful to the Write Once, Run Anywhere principle).

IV. GOOGLE’S SUBVERSION OF WRITE ONCE, RUN ANYWHERE

Unlike Apple or Microsoft, who are developing programming platforms for

specific mobile devices, Google’s Android platform takes a page from Java’s

“Write Once, Run Anywhere” model and is promoted as the programming

platform for all mobile devices. However, Google is unfairly leveraging the Java

Packages for its own commercial gain. Google had an opportunity to utilize a Java

Specification License for Android. It, nonetheless, directly rejected the terms of

23 Java 2, Standard Edition Specification, June 25, 2003, http://docs.oracle.com

/javase/1.4.2/docs/relnotes/license.html (last visited on Feb. 13, 2013)
(emphasis added).

 - 24 -

that license by copying Java’s package names and organization, but then both

subsetting and supersetting the specifications in violation of the Specification

License.

Despite countless attempts by many levels of Sun employees, including

senior executives of Sun, Google declined to license the Java Packages from Sun

or Oracle under any of the three available licenses described above. Google did

not desire compatibility and it did not want to contribute back any changes to the

Java community. Instead, Google merely copied Java’s packages that were most

useful for mobile platforms, and declined to ensure compatibility with Java. By

copying these package elements, names and organization verbatim, Google was

able to provide a programming platform that Java programmers had already

learned. Indeed, the copying of Java was specifically marketed by Google:

Google’s own Android developer website states: “Application Fundamentals -

Android applications are written in the Java programming language.”24

Google’s own platform, Android, however, was not compatible with Java.

Google added other packages that developers used to create programs for Google’s

Android system. Google also omitted many Java packages. By adding some

24 See Application Fundamentals, App Components - Android Developers,

http://developer.android.com/guide/topics/fundamentals.html (last visited Feb.
18, 2013).

 - 25 -

packages and omitting others, Google ensured that programs written for Android

could note be run on any other computer platforms or devices and ensured that

programs written for standard Java devices could not be run on Android.

By copying the creative elements of the Java platform familiar to Java

developers, but at the same time ensuring that Java code written for Android was

transformed into Android-specific code, Google’s actions had two consequences:

quick access to Java developers while ensuring that Java cross-platform

compatibility was not maintained. Google’s copying of the creative structure of

Java was certainly successful in attracting developers quickly, but undermined the

very principle that Java sought to promote: cross-platform compatibility. Because

of Google’s (largely uncommunicated) changes, additions, and subtractions from

its copying of the Java platform, developers who chose to write for Android in

using Java platform conventions found that their resulting applications would only

work on Google’s Android devices. In essence, Google has used the creative

aspects of Java to undermine its core mission: “Write Once, Run Anywhere.”

When Sun developed the Java platform, it unified disparate computers

systems and devices globally under its “Write Once, Run Anywhere” programming

platform. Java’s innovation made possible the proliferation of a number of

computing platforms and devices and helped the Internet grow from a scientific

curiosity to an economic and educational engine. Sun and later Oracle invested a

 - 26 -

great deal of time, manpower and resources into the Java platform at great

monetary risk. By using the Java Packages in violation of the Specification

License, Google is reopening the chaos of system fragmentation that the Java

platform was meant to stem. The threat that a competitor like Google could simply

take the naming conventions and organization of the Java Packages would have

deterred Sun from maintaining its decades-long mission to revolutionize computer

software development.

Figure B - Summary of Methods in java.text Package

 - 27 -

Interface Method

AttributedCharacterIterator getRunStart
 getRunLimit
 getAttributes
 getAllAttributeKeys

CharacterIterator First
 Last
 Current
 Next
 previous
 setIndex
 getBeginIndex
 getEndIndex
 getIndex
 Clone

Class Method
Annotation getValue
 toString

AttributedCharacterIterator.Attribute Equals
 getName
 hashCode
 readResolve
 toString

AttributedString addAttribute
 getIterator

Bidi baseIsLeftToRight
 createLineBidi
 getBaseLevel
 getLevelAt
 getRunCount
 getRunStart
 getRunLimit
 requiresBidi
 reorderVisually
 toString

Class BreakIterator clone
 First

Figure B (Cont.) - Summary of Methods in java.text Package

 - 28 -

Class Method
 Last
 Next
 previous
 following
 preceding
 isBoundary
 current
 getText
 setText
 getWordInstance
 getLineInstance
 getCharacterInstance
 getSentenceInstance
 getAvailableLocales
 getLong
 getInt
 getShort

ChoiceFormat applyPattern
 toPattern
 setChoices
 getLimits
 getFormats
 format
 parse
 nextDouble
 previousDouble
 clone
 hashCode
 equals
 nextDouble

CollationKey compareTo
 equals
 hashCode
 getSourceString
 toByteArray

Collator getInstance
 compare
 getCollationKey
 equals
 getStrength
 getDecomposition

Figure B (Cont.) - Summary of Methods in java.text Package

 - 29 -

Class Method
 setDecomposition
 getAvailableLocales
 clone
 equals
 hashCode

DateFormat format
 public
 parseObject
 getTimeInstance
 getDateInstance
 getDateTimeInstance
 getInstance
 getAvailableLocales
 setCalendar
 setNumberFormat
 setTimeZone
 setLenient
 isLenient
 hashCode
 equals
 clone

DateFormat.Field ofCalendarField
 getCalendarField
 readResolve

DateFormatSymbols getEras
 setEras
 getMonths
 setMonths
 getShortMonths
 setShortMonths
 getWeekdays
 setWeekdays
 getShortWeekdays
 setShortWeekdays
 getAmPmStrings
 setAmPmStrings
 getZoneStrings
 setZoneStrings
 getLocalPatternChars
 setLocalPatternChars
 clone

Figure B (Cont.) - Summary of Methods in java.text Package

 - 30 -

Class Method
 hashCode
 equals

DecimalFormatSymbols getZeroDigit
 setZeroDigit
 getGroupingSeparator
 setGroupingSeparator
 getDecimalSeparator
 getPerMill
 setPerMill
 getPercent
 setPercent
 getDigit
 setDigit
 getPatternSeparator
 setPatternSeparator
 getInfinity
 setInfinity
 getNaN
 setNaN
 getMinusSign
 setMinusSign
 getCurrencySymbol
 setCurrencySymbol
 getInternationalCurrencySymbol
 setInternationalCurrencySymbol
 getCurrency
 setCurrency
 getMonetaryDecimalSeparator
 setMonetaryDecimalSeparator
 clone
 equals
 hashCode

FieldPosition getFieldAttribute
 getField
 getBeginIndex
 getEndIndex
 setBeginIndex
 setEndIndex
 equals
 hashCode
 toString

Figure B (Cont.) - Summary of Methods in java.text Package

 - 31 -

Class Method
Format format
 formatToCharacterIterator
 parseObject
 clone

Format.Field

MessageFormat setLocale
 getLocale
 applyPattern
 toPattern
 setFormatsByArgumentIndex
 setFormats
 format
 formatToCharacterIterator
 parse
 parseObject
 clone
 equals
 hashCode

MessageFormat.Field readResolve

NumberFormat format
 parseObject
 parse
 isParseIntegerOnly
 getInstance
 getNumberInstance
 getIntegerInstance
 getCurrencyInstance
 getPercentInstance
 getAvailableLocales
 hashCode
 equals
 clone
 isGroupingUsed
 setGroupingUsed
 getMaximumIntegerDigits
 setMaximumIntegerDigits
 getMinimumIntegerDigits
 setMinimumIntegerDigits
 getMaximumFractionDigits
 setMaximumFractionDigits

Figure B (Cont.) - Summary of Methods in java.text Package

 - 32 -

Class Method
 getMinimumFractionDigits
 setMinimumFractionDigits
 getCurrency
 setCurrency

NumberFormat.Field readResolve

ParsePosition getIndex
 setIndex
 setErrorIndex
 getErrorIndex
 equals
 hashCode
 toString

RuleBasedCollator getRules
 getCollationElementIterator
 compare
 getCollationKey
 clone
 equals
 hashCode

SimpleDateFormat set2DigitYearStart
 get2DigitYearStart
 format
 formatToCharacterIterator
 parse
 toPattern
 toLocalizedPattern
 applyPattern
 applyLocalizedPattern
 getDateFormatSymbols
 setDateFormatSymbols
 clone
 hashCode
 equals

StringCharacterIterator setText
 first
 last
 setIndex
 current
 next

Figure B (Cont.) - Summary of Methods in java.text Package

 - 33 -

Class Method
 previous
 getBeginIndex
 getEndIndex
 getIndex
 equals
 hashCode
 clone

 - 34 -

Dated: February 22, 2013

Respectfully submitted,

 By: /s/ Steven T. Cottreau
 STEVEN T. COTTREAU

CLIFFORD CHANCE US LLP
2001 K STREET, NW
WASHINGTON, DC 20006
(202) 912-5000
Steve.Cottreau@CliffordChance.com
Counsel of Record

Counsel for Amici Curiae Scott Mcnealy and Brian Sutphin

CERTIFICATE OF COMPLIANCE WITH FED. R. APP. P. 29 AND 32

1. This Amici Curiae Brief complies with the type-volume limitations of

Federal Rules of Appellate Procedure 29(d) and 32(a)(7)(B) because it contains

6,096 words, excluding the parts of the Brief exempted by Fed. R. App. P.

32(a)(7)(B)(iii).

2. This Amici Curiae Brief complies with the typeface requirements of

Federal Rules of Appellate Procedure 32(a)(5) and the type style requirements of

Rule 32(a)(6) because this has been prepared in a proportionally spaced typeface

using Microsoft Word 2007 14-point Times New Roman font.

Dated: February 22, 2013

/s/ Steven T. Cottreau
Steven T. Cottreau (Counsel of Record)
Counsel for Amici Curiae

CERTIFICATE OF SERVICE

I hereby certify that on February 22, 2013, I electronically filed a copy of

this Amici Curiae Brief of Scott McNealy and Brian Sutphin in Support of

Plaintiff-Appellant with the Clerk of the Court for the United States Court of

Appeals for the Federal Circuit using the Appellate CM/ECF system, which will

automatically send email notification of such filing to the following counsel of

record:

E. Joshua Rosenkranz, -
Direct: 212-506-5380
Email: jrosenkranz@orrick.com
Fax: 212-506-5151
Orrick, Herrington & Sutcliffe LLP
51 West 52nd Street
New York, NY 10019

Dale M. Cendali, -
Direct: 212-446-4800
Email: dale.cendali@kirkland.com
Kirkland & Ellis LLP
601 Lexington Avenue
Citigroup Center
New York, NY 10022

Dorian Estelle Daley, Esq., General Counsel
Direct: 650-506-5200
Email: dorian.daley@oracle.com
Fax: 650-506-7114
Oracle America, Inc.
Oracle Legal Department
500 Oracle Parkway
Redwood Shores, CA 94065

Kelly M. Daley, Esq.
Direct: 212-506-5000
Email: kdaley@orrick.com
Orrick, Herrington & Sutcliffe LLP
51 West 52nd Street
New York, NY 10019

Mark S. Davies, Esq., -
Direct: 202-339-8631
Email: mark.davies@orrick.com
Fax: 202-339-8500
Orrick, Herrington & Sutcliffe LLP
Columbia Center
1152 15th Street, N.W.
Washington, DC 20005

Susan M. Davies
Direct: 202-879-5000
Email: susan.davies@kirkland.com
Kirkland & Ellis LLP
655 15th Street, N.W.
Washington, DC 20005

Sean Fernandes
Direct: 650-859-7014
Email: sean.fernandes@kirkland.com
Kirkland & Ellis LLP
3330 Hillview Ave.
Palo Alto, CA 94304

Annette Louise Hurst, Esq.
Direct: 415-773-4585
Email: ahurst@orrick.com
Orrick, Herrington & Sutcliffe LLP
405 Howard Street
San Francisco, CA 94105

Michael Allen Jacobs, Attorney
Direct: 415-268-7455
Email: mjacobs@mofo.com

Fax: 415-268-7522
Morrison & Foerster LLP
Firm: 415-268-7178
425 Market Street
San Francisco, CA 94105

Kenneth Alexander Kuwayti, Esq.
Direct: 650-813-5600
Email: KKuwayti@mofo.com
Morrison & Foerster LLP
Firm: 650-813-5600
755 Page Mill Road
Palo Alto, CA 94304-1018

Elizabeth Cincotta McBride
Direct: 650-614-7377
Email: emcbride@orrick.com
Orrick, Herrington & Sutcliffe LLP
1000 Marsh Road
Menlo Park, CA 94025

Deborah Kay Miller, Associate General Counsel
Direct: 650-506-0563
Email: deborah.miller@oracle.com
Fax: 650-506-7114
Oracle America, Inc.
Oracle Legal Department
Room 5 op 762
500 Oracle Parkway
Redwood Shores, CA 94065

Gabriel Morgan Ramsey, Attorney
Direct: 650-614-7400
Email: gramsey@orrick.com
Fax: 650-614-7401
Orrick, Herrington & Sutcliffe LLP
1000 Marsh Road
Menlo Park, CA 94025

Matthew Sarboraria, Esq., Associate General Counsel
Direct: 650-506-1372
Email: matthew.sarboraria@oracle.com
Oracle America, Inc.
Oracle Legal Department
m/s 5OP726
500 Oracle Parkway
Redwood Shores, CA 94065

Andrew D. Silverman, Attorney
Direct: 212-506-3727
Email: asilverman@orrick.com
Fax: 212-506-5151
Orrick, Herrington & Sutcliffe LLP
51 West 52nd Street
New York, NY 10019

Joshua L. Simmons, Attorney
Direct: 212-446-4989
Email: joshua.simmons@kirkland.com
Fax: 212-446-4900
Kirkland & Ellis LLP
601 Lexington Avenue
Citigroup Center
New York, NY 10022

Andrew C. Temkin
Direct: 650-506-9432
Email: andrew.temkin@oracle.com
Fax: 650-506-7114
Oracle America, Inc.
Oracle Legal Department
500 Oracle Parkway
Redwood Shores, CA 94065

Diana M. Torres
Direct: 213-680-8400
Email: diana.torres@kirkland.com
Fax: 213-680-8500
Kirkland & Ellis LLP

333 S. Hope Street
Los Angeles, CA 90071

Christa M. Anderson
Direct: 415-391-5400
Email: canderson@kvn.com
Fax: 415-397-7188
Keker & Van Nest LLP
633 Battery Street
San Francisco, CA 94111

Steven A. Hirsch, Attorney
Direct: 415-391-5400
Email: shirsch@kvn.com
Fax: 415-397-7188
Keker & Van Nest LLP
633 Battery Street
San Francisco, CA 94111

Daniel E. Jackson, Esq., Attorney
Direct: 415-391-5400
Email: djackson@kvn.com
Fax: 415-397-7188
Keker & Van Nest, LLP
710 Sansome Street
San Francisco, CA 94111

Michael Soonuk Kwun, Esq., Senior Counsel
Direct: 415-391-5400
Email: mkwun@kvn.com
Fax: 415-397-7188
Keker & Van Nest, LLP
710 Sansome Street
San Francisco, CA 94111

Robert A. Van Nest, Esq.
Direct: 415-391-5400
Email: rvannest@kvn.com
Fax: 415-397-7188
Keker & Van Nest, LLP

710 Sansome Street
San Francisco, CA 94111

Dated: February 22, 2013

/s/ Steven T. Cottreau
Steven T. Cottreau (Counsel of Record)
Counsel for Amici Curiae

