
Before the
U.S. COPYRIGHT OFFICE, LIBRARY OF CONGRESS

In the matter of Exemption to Prohibition on Circumvention
of Copyright Protection Systems for Access Control Technologies

Under 17 §U.S.C. 1201 (a)(1)

Docket No. 2014-07
Comment of the Electronic Frontier Foundation

1. Commenter Information:

Electronic Frontier Foundation
Mitchell L. Stoltz
Corynne McSherry
Kit Walsh
815 Eddy St
San Francisco, CA 94109
(415) 436-9333
mitch@eff.org

The Electronic Frontier Foundation (EFF) is a member-supported, nonprofit public interest
organization devoted to maintaining the traditional balance that copyright law strikes between
the interests of rightsholders and the interests of the public. Founded in 1990, EFF represents
over 25,000 dues-paying members, including consumers, hobbyists, artists, writers, computer
programmers, entrepreneurs, students, teachers, and researchers, who are united in their reliance
on a balanced copyright system that ensures adequate incentives for creative work while
promoting innovation, freedom of speech, and broad access to information in the digital age. In
filing these comments, EFF represents the interests of the many people in the U.S. who have
“jailbroken” their cellular phone handsets and other mobile computing devices—or would like to
do so—in order to use lawfully obtained software of their own choosing, and to remove software
from the devices.

2. Proposed Class 16: Jailbreaking – wireless telephone handsets

Computer programs that enable mobile telephone handsets to execute lawfully obtained
software, where circumvention is accomplished for the sole purposes of enabling interoperability
of such software with computer programs on the device or removing software from the device.

3. Overview: The Ability To Add, Modify, and Remove Software From Mobile Phones

And Similar Devices Is More Important Than Ever.

EFF asks the Librarian to grant an exception to the ban on circumventing access controls on

 2

copyrighted works, 17 U.S.C. § 1201(a)(1), applying to mobile telephone handsets.1 This
exception would be for the purpose of jailbreaking or rooting on order to enable mobile phones
to run lawfully purchased software of the phone owner’s choice, or to remove unwanted
software.2

The Librarian has granted an exemption for jailbreaking mobile phones in each of the last two
triennial proceedings, and an exemption has now been in place for nearly five years. During that
time, the prevalence of mobile phones as a computing platform, the need for security, privacy,
and customization on those devices, and the demand for lawful, non-manufacturer-approved
software have all increased dramatically. But access controls affecting the vast majority of
devices continue to stand in the way of phone owners’ ability to run the lawfully acquired
software of their choice, to remove software from their devices, to prolong the useful life of their
devices, and to maintain the security of their personal information. The need for a continued
exemption to § 1201(a)(1)’s prohibition has never been stronger.

Mobile phones are now ubiquitous in the United States. As of 2013, 91% of the adult population
owned a cellular phone, an increase of 8% since 2011.3 The use of feature-rich smartphones,
which are general-purpose computers as well as voice communication devices, is increasing:
about 75% of all mobile phones in use were smartphones as of December 2014.4 A majority of
people in every age group, over 176 million in all, own smartphones.5 The percentage of U.S.
adults who are smartphone users has increased by 23% since 2011 to 58%, but among
millennials (people in the 18-34 age group), smartphone ownership is nearly universal at 85%.6
Worldwide smartphone sales increased by 23.8% in 2014, and worldwide smartphone sales are
expected to reach 1.8 billion units by 2018.7

1 EFF has also requested that the Librarian extend the exemption to all mobile computing devices sold with
operating systems designed primarily for mobile use and not designed primarily for media consumption, a class that
notably includes tablets. The Copyright Office has categorized that extension as Proposed Class 17, and we address
it in separate comments.
2 The term “jailbreaking” is commonly used for Apple devices running iOS, while the preferred terms for devices
running Android and its derivatives are “rooting” or “bootloader unlocking.” For clarity, these comments will refer
to “jailbreaking” a device regardless of the operating system.
3 Aaron Smith, Smartphone Ownership 2013, Pew Research (June 5, 2013), http://www.pewinternet.org/2013/06/05/
smartphone-ownership-2013; see also Senate Rpt. 113-212, S.517 (2014), available at
http://www.gpo.gov/fdsys/pkg/CRPT-113srpt212/html/CRPT-113srpt212.htm (last visited Feb. 4, 2015) (“As of
January 2014, 90% of American adults own a cell phone, 58% percent own a smartphone, and 40% own tablets.”).
4 comScore Reports October 2014 U.S. Smartphone Subscriber Market Share, comScore (Dec. 5, 2014),
http://www.comscore.com/Insights/Market-Rankings/comScore-Reports-October-2014-US-Smartphone-Subscriber-
Market-Share.
5 Id.; Smartphone milestone: half of mobile subscribers ages 55+ own smartphones, Nielsen (Apr. 22, 2014),
http://www.nielsen.com/us/en/insights/news/2014/smartphone-milestone-half-of-americans-ages-55-own-
smartphones.html.
6 Device Ownership Over Time, Pew Research, http://www.pewinternet.org/data-trend/mobile/device-ownership/
(last updated Jan. 2014); Mobile Millennials: over 85% of generation Y owns smartphones, Nielsen (Sep. 9, 2014),
http://www.nielsen.com/us/en/insights/news/2014/mobile-millennials-over-85-percent-of-generation-y-owns-
smartphones.html.
7 Smartphone Outlook Remains Strong for 2014, Up 23.8%, Despite Slowing Growth in Mature Markets, According
to IDC, International Data Corporation (IDC) (Aug. 28, 2014), http://www.idc.com/getdoc.jsp?containerId=prUS25
058714.

 3

One of the fastest-growing categories of smartphones is phablets, so called because they are
intermediate in size between smaller phones and full-sized tablets. Phablets were predicted to sell
175 million units in 2014, exceeding sales of laptop personal computers (PCs).8 Phablets are
expected to grow from 14% of the worldwide smartphone market to 32.2% by 2018.9

Smartphones have replaced desktop and laptop PCs for most uses. In 2013, mobile devices
became the leading platform for total time spent online, surpassing PCs.10 Smartphone owners
access apps and mobile sites an average of seven times per day.11

As smartphone functionality develops, consumers are able to use their mobile devices for a
greater range of functions, reaching into more categories for which personal computers have
traditionally been used. Consumers spend more time looking at maps and weather, social
networking, and overall Internet use on mobile devices than on PCs.12 Modern smartphones have
many functions that most PCs don’t, such as a point-and-shoot camera, GPS navigation system,
video recorder, and tilt-based input. Moreover, the increased use of cloud-based services is
making desktop software less necessary.13

Mobile devices, including smartphones, are deeply personal devices. They often contain personal
photographs and video, sensitive communications, and a great deal of information about the
owner’s movements, associations, preferences, and thoughts.14 The intimacy of smartphone use
leads to strong demand for customization, and for the ability to take control of one’s own
privacy.15

8 A Future Fueled by Phablets – Worldwide Phablet Shipments to Surpass Portable PCs in 2014 and Tablets by
2015, According to IDC, International Data Corporation (IDC) (Sep. 3, 2014),
http://www.idc.com/getdoc.jsp?containerId=prUS25077914.
9 Id.
10 Adam Lella, When Mobile Web Dominates Apps in an App-Dominated World, comScore (July 2, 2014),
http://www.comscore.com/Insights/Blog/When-Mobile-Web-Dominates-Apps-in-an-AppDominated-World.
11 How Smartphone Are Changing Consumers’ Daily Routines Around the Globe, Nielsen (Feb. 24, 2014),
http://www.nielsen.com/us/en/insights/news/2014/how-smartphones-are-changing-consumers-daily-routines-
around-the-globe.html.
12 Greg Sterling, Report: Nearly 40 Percent Of Internet Time Now On Mobile Devices, Marketing Land (Feb. 26,
2013), http://marketingland.com/report-nearly-40-percent-of-internet-time-now-on-mobile-devices-34639.
13 Scott Martin & Jon Swartz, Desktop PCs less popular than ever, USA Today (June 24, 2013),
http://www.usatoday.com/story/tech/2013/03/06/apple-google-microsoft-hewlett-packard-dell-ipad-iphone-android-
ios-samsung-galaxy/1946325/.
14 See What to do if Your Cell Phone is Lost or Stolen, USA.gov (June 16, 2014),
http://blog.usa.gov/post/88969462496/what-to-do-if-your-cell-phone-is-lost-or-stolen (“Mobile phones are a vital
part of life. You may store passwords, account numbers, phone numbers, addresses all in this one device. If your
phone is lost or stolen, your privacy, identity, and bank accounts could also be in jeopardy.”); U.S. v. Jones, 132 S.
Ct. 945, 955 (2012) (Sotomayor, J., concurring) (the record of a person’s movements “reflects a wealth of detail
about her familial, political, professional, religious, and sexual associations.”) (citation omitted).
15 Jay Freeman (“SaurikIT”), What is “Jailbreaking”? @ Dragon Con 2014, at 3:09 (Oct. 4, 2014),
https://www.youtube.com/watch?v=1Mdwo8aUbSs (last visited Feb. 4, 2015).

 4

4. The Technological Protection Measures: Cryptographic Verification of Software,
Locked Bootloaders, and Denial of “root” Privileges on Mobile Operating Systems.

A profound difference between phones and PCs is that controls within the firmware16 on nearly
all phones (and other mobile devices) prevent the owner of the device from installing, removing,
or modifying software to some degree. The overwhelming majority of mobile devices sold and
used in the U.S. contain technical protection measures that limit what software can run on the
device, limit what such software can do, or both.

The smartphone market is dominated by devices running two operating systems: Google’s
Android, and Apple’s iOS. As of October 2014, Android is installed on a majority of all
smartphones, while iOS is installed on 42% of smartphones.17 Together, these two platforms
control 94.2% of smartphones, an increase of 16% since January 2012.18 Other mobile operating
systems, such as Windows Phone (3.5% of market share), BlackBerry (2%), and Symbian (.1%),
control a very small share of mobile devices.19 Android, iOS, and other mobile operating systems
all contain access controls that restrict the running and removal of software.

A. iOS: Cryptographic Verification of All Software

Devices that run iOS, including the iPhone, iPod Touch, and iPad, continue to be subject to
severe restrictions on the loading, running, and deletion of software. iOS contains cryptographic
verification that prevents any application from running on a device unless it bears a digital
signature from Apple.20 This restriction means that new software can only be loaded on a device
through Apple’s iTunes Store. It also contains cryptographic checks at various levels of the
software stack that prevent modification or replacement of the operating system itself.21

B. Android and its Variants: Locked Bootloaders, Lack of Access to Root Privileges

Android is developed by Google and sold through a variety of distribution channels. Android has
many variants, including “pure” Android versions (containing little or no non-Google code) sold

16 The term “firmware” with respect to mobile devices encompasses the fundamental software components that start
up the device and mediate access to its screen, camera, speaker, cellular radio, and other fundamental functions. It is
loosely synonymous with “operating system.” See About CyanogenMod, CyanogenMod,
http://wiki.cyanogenmod.org/w/About#But_wait--_is_the_right_term_.22ROM.22_or_.22firmware.22_or_what.3F
(last visited Feb. 4, 2015) (“The ambiguous terminology is just the result of a decade-long transition from simple,
non-replaceable software on hand-held devices to full-fledged, updatable operating systems on a small, portable
computers that fits in the palm of your hand.”).
17 Market share held by smartphone platforms in the United States from January 2012 to October 2014, Statista,
http://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/ (last
visited Feb. 4, 2015).
18 Id.
19 comScore Reports October 2014 U.S. Smartphone Subscriber Market Share, comScore (Dec. 5, 2014),
http://www.comscore.com/Insights/Market-Rankings/comScore-Reports-October-2014-US-Smartphone-Subscriber-
Market-Share.
20 Apple Inc., iOS Security—White Paper, at 4 (Oct. 2014),
https://www.apple.com/privacy/docs/iOS_Security_Guide_Oct_2014.pdf (last visited Feb. 4, 2014) (“The …
process described above helps ensure that only Apple-signed code can be installed on a device.”).
21 Id.; Statement of Dr. Jeremy Gillula, at 2 (Feb. 6, 2015) [hereinafter “Gillula Statement”].

 5

on some Nexus and Motorola devices,22 and more customized versions sold by manufacturers
such as Samsung, HTC, and LG, and by wireless carriers like Verizon and AT&T. These
manufacturers and carriers modify Android extensively on the devices they sell, and often
include a great deal of additional software—both low-level functions and applications (“apps”).
There are also variants of Android based on the Android Open Source Project (AOSP),23
including CyanogenMod. However, open source variants are not sold on new devices in the U.S.
and cannot be installed on a device without circumventing the access controls in the original
firmware.

Android is not as restrictive as iOS, in that Android allows a user to install application software
from any source, and apps need not be cryptographically signed by a particular entity in order to
run. However, Android contains technical measures that control access to key functionality and
limit the functionality of application software. The fundamental access control on Android
devices is the bootloader, a component of the firmware.24 The bootloader starts up the device and
loads the operating system into memory, which in turn loads “apps” and other software.25 On
Android devices, the bootloader verifies the operating system on the device cryptographically,
and will refuse to run an operating system not approved by the device manufacturer, or one that
has been modified.26

The manufacturer-installed Android operating system, in turn, places limits on what “apps” and
other user software can do. First, the operating system does not allow the device owner, or any
programs installed by the owner, to acquire full administrative access to the device (the status
known to programmers of Android and other UNIX-related systems as “root privileges”).27
While a user or application with root privileges can access any function or data on a device, a
user without root privileges can access only a limited subset.28 The operating system also
prohibits the user from removing unwanted programs that were installed by the manufacturer or
wireless carrier.

Attempting to modify the operating system to allow the user to acquire root privileges, or to
replace the operating system entirely, causes the bootloader to refuse to load the operating
system.29 Thus, in order to run applications that use enhanced functionality, or to replace the
operating system with one that one that offers greater functionality and security, a device owner

22 Lynn La & Brian Bennett, Powerful Pure Android Phones (Roundup), CNet (Jan. 2, 2014),
http://www.cnet.com/news/powerful-pure-android-phones/.
23 See Welcome to the Android Open Source Project!, Android, https://source.android.com/ (last visited Feb. 4,
2015).
24 Statement of James Willcox, at 1 (Feb. 6, 2015) [hereinafter “Willcox Statement”]; Gillula Statement at 1-2;
Statement of Marc Rogers, at 2-3 (Feb. 6, 2015) [hereinafter “Rogers Statement”].
25 Ivo, So You Want To Know About Bootloaders, Encryption, Signing, And Locking? Let Me Explain, Android
Police (May 27, 2011), http://www.androidpolice.com/2011/05/27/so-you-want-to-know-about-bootloaders-
encryption-signing-and-locking-let-me-explain/; see also Rogers Statement at 2.
26 Gillula Statement at 1-2. While it is theoretically possible to erase all software from a device, including the
bootloader, and install new code, in practical terms this is effectively impossible because it would require detailed
information about the layout and function of the processor, circuit boards, and other device hardware—information
that is a closely guarded trade secret and varies from device to device.
27 Id. at 1; Willcox Statement at 1.
28 Willcox Statement at 1.
29 Rogers Statement at 2; Gillula Statement at 1-2.

 6

must circumvent the cryptographic checks in the bootloader or disable the access controls that
restrict root privileges in the operating system, or both.30

C. Other Mobile Operating Systems

Other operating systems designed for mobile devices, which together represent less than 6% of
the U.S. market, also contain access controls that restrict the loading and functionality of
software. Windows Phone imposes constraints on app software that are similar to Android’s.31
While it allows users to load applications from sources other than Microsoft’s own online store,
it limits the number of applications that can be loaded this way to as few as two.32 BlackBerry
OS has restrictions similar to those on Android.33

5. Noninfringing Uses: Installing Lawfully Obtained Software, and Removing

Software.

A. Jailbreaking Described

Jailbreaking most mobile devices requires making use of a security vulnerability in either the
operating system or the bootloader. For an iOS device, jailbreaking involves modifying the
firmware so that it will run software code without checking to see if the code has been
cryptographically signed by Apple. On Android, jailbreaking (known in this context as
“rooting”) typically involves using a vulnerability in some piece of manufacturer-installed
software to gain the ability to run arbitrary software with root privileges. Once the owner gains
this ability, she can run a program that will modify the bootloader to permit loading a modified
operating system of her choosing. Dr. Jeremy Gillula, an EFF staff technologist, describes a
typical Android rooting process in his statement attached hereto, and in a video submitted with
these comments.

The precise means of jailbreaking are discovered through trial and error and vary by device and
software version. For all devices of which we are aware, jailbreaking requires modifying only a
small portion of the firmware.

Software development communities and retail markets for non-manufacturer-approved software
have arisen to fulfill the demand for more functional, secure, and customizable mobile software.
Cydia, an online marketplace for non-Apple-authorized iOS software, launched in 2008 and
remains very popular. Between 11.9 million and 16.3 million iOS devices in the U.S. were
registered with Cydia between 2012 and 2014, and these figures likely underestimate the actual
number of users, as many do not register.34 Cydia distributes about 6500 different iOS software

30 Rogers Statement at 2; Gillula Statement at 1.
31 GoodDayToDie, [XAP][GUIDE] Interop Unlock for WP8 + all Capabilities, XDA Developers (Sep. 7, 2013),
http://forum.xda-developers.com/showthread.php?t=2435697 (last visited Feb. 4, 2015).
32 Stephen Schenck, Even Microsoft’s new WP8 sideloading rules are still seriously anti-user, PocketNow (Aug 14,
2013), http://pocketnow.com/2013/08/14/windows-phone-sideloading.
33 Joe Jerde, How To Sideload Android Apps On BlackBerry 10 Using A PC, BlackBerryOS (Mar. 13, 2013),
http://www.blackberryos.com/blackberry-10-tips-faq-how/35970-how-sideload-android-apps-blackberry-10-using-
pc.html.
34 Source: Cydia registrations geolocated by device IP address. Data on file with commenters.

 7

programs, up from 3500 at the beginning of 2012.35 Many more software programs are hosted on
other websites and downloaded through the Cydia app.36 Most of these programs are not “apps”
as Apple defines them, but rather programs that alter the experience of using the device. For
example, the popular Auki program allows users of jailbroken iOS devices to send and respond
to text messages without leaving the app that’s currently running.37 A program called Barrel adds
dramatic transition effects to the iOS home screen.38 Like most software distributed through
Cydia, these cannot be run without jailbreaking the device, and the functionality they offer is not
available on a non-jailbroken device.

In the Android world, XDA-developers, an online message board community for independent
software developers, now has 6.1 million member,39 up from 4 million in 2011.40 CyanogenMod,
an open source derivative of Android, is another focus of independent development, and had
over 12 million active installs as of June 2014,41 making it one of the most widely used varieties
of Android. Two other projects, Firefox OS and Ubuntu Mobile, also offer (or will soon offer)
alternative operating systems for Android-compatible devices. 42 Installing any of these
alternative operating systems on a mobile device requires access to the bootloader.43

B. Jailbreaking Is A Noninfringing Fair Use

Although jailbreaking involves making a derivative work of the firmware on one’s device, it
does not infringe copyright because it is a fair use. 44 Fair use is “a privilege in others than the
owner of the copyright to use the copyrighted material in a reasonable manner without his
consent.”45 In 2010 and 2012, the Register and the Librarian correctly concluded that modifying
the firmware in one’s device in order to run lawfully acquired software is a fair use, falling
squarely within Congress’s intent to promote software interoperability. Court decisions since
2012 give additional weight to that determination.

1. The Purpose and Character of the Use

The first factor looks at whether the use of a copyrighted work is “more incidental and less

35 Source: Cydia. Data on file with commenters.
36 Id.
37 See auki, TheBigBoss.org, http://moreinfo.thebigboss.org/moreinfo/depiction.php?file=aukiDp (last visited Feb.
4, 2015).
38 See Jignesh Padhiyar, 10 Best iOS 8 Cydia Tweaks You Should Install on your iDevice, iGeeksBlog,
http://www.igeeksblog.com/best-ios-8-cydia-tweaks/ (last visited Feb. 4, 2015).
39 See xda-developers Statistics, subsection of What’s Going On?, XDA-Developers, http://forum.xda-
developers.com/ (last visited Jan. 15, 2015) (6,158,000 members listed when last checked).
40 See In the Matter of Exemption to Prohibition on Circumvention of Copyright Protection Systems for Access
Control Technologies, Dkt. No. RM 2011-07, Comments of the Electronic Frontier Foundation at 5 n.19 (Dec. 1,
2011) (“EFF 2011 Comments”).
41 Interview with Koushik Dutta, January 2015 (on file with commenters). As many CyanogenMod users do not
report their use to the company, this number likely underestimates the total number of users.
42 See Wikipedia, Firefox OS, http://en.wikipedia.org/w/index.php?title=Firefox_OS&oldid=645088074 (as of Feb.
4, 2015, 22:12 GMT); Ubuntu on Phones, Ubuntu, http://www.ubuntu.com/phone (last visited Feb. 4, 2015).
43 Gillula Statement at 2.
44 17 U.S.C. § 107 (“The fair use of a copyrighted work . . . is not an infringement of copyright.”).
45 Harper & Row, Publrs. v. Nation Enters., Inc., 471 U.S. 539, 549 (1985) (citations omitted).

 8

exploitative in nature.”46 Where a user of software code is “not seeking to exploit or unjustly
benefit from any creative energy that [the rightsholder] devoted to writing the program code,”
the first factor favors a finding of fair use.47

Over the years, a robust body of caselaw has developed recognizing uses of copyrighted work
that enable greater access to information as fair uses. Some of these cases deal specifically with
analysis and modification of functional aspects of software and have informed the Register’s
prior decisions to recommend exemptions for phone jailbreaking, phone unlocking, video game
security research, abandoned software, and other exemptions relating to software.

In Sega v. Accolade, the Ninth Circuit explained that research into the functional aspects of video
game software was a legitimate purpose. Accolade reverse-engineered Sega’s games to
determine the requirements for compatibility with Sega’s game consoles, in order to produce its
own games.48 The court found that when Accolade reverse-engineered and made copies of its
competitor’s code, its “direct use” of the code was done in service of a broader, favored purpose:
building new, independently developed, compatible software.49

In Sony Computer Entm’t v. Connectix Corp.,50 the Ninth Circuit expanded upon its reasoning in
Sega. Connectix reverse-engineered the operating system software of the Sony Playstation game
console in order to create a platform for Playstation games to be played on personal computers.51
The court held this to be a fair use, emphasizing that the innovation resulting from the creation of
new platforms was favored under the first factor because it “afford[ed] [users] opportunities for
game play in new environments.”52

As two Registers concluded in prior proceedings, Congress re-affirmed the principle expressed
in Sega and Connectix when it enacted the Digital Millennium Copyright Act. In the legislative
history of Section 1201(f), “Congress expressed a commitment to permit and encourage
interoperability between independently created computer programs and existing programs,” in
order to “avoid hindering competition and innovation in the computer and software industry.”53
As the Register found in 2010 and reaffirmed in 2012, Congress’s affirmation of the importance

46 Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 522, 544 (6th Cir. 2004) (quoting Kelly v. Arriba
Soft Corp., 336 F.3d 811, 818–19 (9th Cir. 2003)).
47 Id. at 544.
48 977 F.2d 1510, 1514 (9th Cir. 1992), as amended (Jan. 6, 1993).
49 Id. at 1522-23.
50 203 F.3d 596 (2000).
51 Id. at 598-99.
52 Id. at 606; See also Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1547 (11th Cir. 1996) (holding that “external
factors such as compatibility” reduce the rightsholder’s legal interest in the copyright and favor a finding of fair
use.)
53 Recommendation of the Register of Copyrights in RM 2008-8, at 92, Rulemaking on Exemptions from
Prohibition on Circumvention of Copyright Protection Systems for Access Control Technologies (June 11, 2010)
[hereinafter 2010 Recommendation], available at www.copyright.gov/1201/2010/initialed-registers-
recommendation-june-11-2010.pdf; see also Recommendation of the Register of Copyrights, at 71-72, Section 1201
Rulemaking: Fifth Triennial Proceeding to Determine Exemptions to the Prohibition on Circumvention (Oct. 12,
2012 [hereinafter 2012 Recommendation], available at http://www.copyright.gov/1201/2012/Section_1201_Rulema
king%20_2012_Recommendation.pdf.

 9

of interoperability should guide a determination of fair use in the triennial rulemaking.54

An important aspect of the first fair use factor is whether the use in question is transformative,
meaning that it does not “merely supersede[] the objects of the original expression.”55 Copying
and modification of software to render it compatible with other, independently created software
has been held to be a transformative purpose.56 This finding is reinforced by decisions holding
that the use of digital text and images for new purposes that are “different in purpose, character,
expression, meaning, and message” from those of the copyright holder is transformative.57
Because jailbreaking allows a phone and its firmware to be used for new purposes, imbuing them
with further usefulness, personalization, and meaning, jailbreaking is a transformative purpose.58

Further, jailbreaking for purposes of installing lawfully obtained software is noncommercial. As
the Supreme Court noted in Sony Corp. of America v. Universal Studios Inc., “private home use
must be characterized as a noncommercial, nonprofit activity,” even where the use involved
lawfully obtained copies of commercially distributed works.59 The Court held in the absence of
some demonstrable likelihood of harm to the copyright holder, personal, noncommercial use was
fair use.60 Likewise, phone owners who jailbreak do not do so for profit, but rather to enhance
and personalize their devices.61

In addition, jailbreaking smartphones promotes additional creativity and expands access to
knowledge by encouraging the creation of new software applications and expanded functionality
for these devices.62 As discussed further below, the ability to upgrade the device operating
system to patch known security vulnerabilities can safeguard the owner’s privacy and potentially
extend the lifespan of the device. Because jailbreaking a smartphone for purposes of making
operating systems interoperable with independently created applications is transformative,
personal, noncommercial, and confers a public benefit, the first factor weighs heavily in favor of
a finding of fair use.

54 2012 Recommendation at 72 (“[A]lthough jailbreaking does not ‘fall within the four corners of the statutory
exemption in Section 1201(f), the fact that [a smartphone owner] is engaging in jailbreaking in order to make the
[device’s] firmware interoperable with an application specifically created for the [smartphone] suggests that the
purpose and character of the use are favored.’”).
55 Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 569-70 (1994).
56 Connectix, 203 F.3d at 606-07.
57 Authors Guild, Inc. v. HathiTrust, 755 F. 3d 87, 97 (2d Cir. 2014); Perfect 10, Inc. v. Amazon.com, Inc., 508 F.3d
1146, 1165 (9th Cir. 2007); Kelly v. Arriba Soft Corp., 336 F.3d 811, 818-22 (9th Cir. 2003).
58 We note that the Register has previously expressed doubt that jailbreaking is a transformative use, but concluded
that transformativeness was not a requirement under the first factor. 2010 Recommendation at 95; 2012
Recommendation at 72, n.361.
59 464 U.S. 417, 449-50 (1984).
60 Id. at 454-56.
61 Cf. Sega, 977 F.2d at 1522-24; Connectix, 203 F.3 at 606-607.
62 See Sega, 977 F.2d at 1522-23 (noting the public benefit that resulted from independent developers engaging in
new creative expression).

 10

2. The Nature of the Copyrighted Work

The second factor, the nature of the copyrighted work, also weighs heavily in favor of fair use. In
evaluating the second factor, courts look at the degree to which a work is creative or functional.63
In Sega, the Ninth Circuit found the second factor to weigh in favor of fair use where copying for
reverse engineering purposes was necessary in order to understand software code’s functional
interoperability requirements.64 As that court reasoned, “[i]f disassembly of copyrighted object
code is per se an unfair use, the owner of the copyright gains a de facto monopoly over the
functional aspects of his work—aspects that were expressly denied copyright protection by
Congress.”65 The Connectix opinion further noted that “[i]f [copyright holder] Sony wishes to
obtain a lawful monopoly on the functional concepts in its software, it must satisfy the more
stringent standards of the patent laws.”66

In the 2010 and 2012 rulemaking proceedings, relying in part on Sega’s reasoning, the Register
concluded that the second factor “decisively favors a finding of fair use.”67 Noting that the
second factor is “perhaps more important than usual in cases involving the interoperability of
computer programs,”68 the Register noted that bootloaders and operating systems are largely
functional works, and that “[a]s functional works, certain features are dictated by function and in
order to interoperate with those works certain functional elements of those programs, elements
that in and of themselves may or may not be copyrightable, must be modified.”69

The Federal Circuit’s 2014 holding in Oracle v. Google regarding fair use of software interfaces
is consistent with the Register’s reasoning in the 2010 and 2012 rulemakings. The court noted
that some elements of computer programs are “dictated by considerations of efficiency or other
external factors” and held that “where the nature of the work is such that purely functional
elements exist in the work and it is necessary to copy the expressive elements in order to perform
those functions, consideration of this second factor arguably supports a finding that the use is
fair.”70

At least one court has found that where a portion of a software program functions as a “lockout
code[]” that must be used to enable compatibility with independently created programs, the
rightsholder’s copyright interest in that portion of code is minimal. In Static Control
Components, Inc. v. Lexmark Intern., Inc., Static Control copied a small portion of code from
Lexmark’s laser printer firmware, acting on a reasonable belief that only by copying that code
could Static Control build toner cartridge components that would interoperate with Lexmark

63 Id. at 1524 (“The second statutory factor, the nature of the copyrighted work, reflects the fact that not all
copyrighted works are entitled to the same level of protection. The protection established by the Copyright Act for
original works of authorship does not extend to the ideas underlying a work or to the functional or factual aspects of
the work.”).
64 Id. at 1526.
65 Id.; see also Connectix, 203 F.3d at 605 (finding the second statutory factor to “strongly favor” fair use where
copying was necessary to disassemble and view the ideas contained within firmware).
66 Connectix, 203 F.3d at 605.
67 2010 Recommendation at 97, 2012 Recommendation at 73.
68 2012 Recommendation at 73; 2010 Recommendation at 96.
69 2010 Recommendation at 96.
70 Oracle America, Inc. v. Google Inc., 750 F. 3d 1339, 1375 (Fed. Cir. 2014).

 11

printers.71 The court held that software code used as a “lockout” bears only a thin copyright
interest that is overcome by the need to use that code for interoperability.72

With regard to jailbreaking, the elements of a device’s firmware that must be modified are
security checks in the bootloader and operating system. These elements are dictated almost
entirely by external considerations—namely, the exclusionary policies they implement—and not
by the creative decisions of their authors. They function as “lockout codes.” They play no role in
generating creative graphics or sounds that lie closer to the core of copyright protection. Finally,
computer operating systems are customarily used to enable the device owner to run other,
independently created software without the consent of the rightsholder in the operating system.
Thus, the second factor also favors a finding of fair use.

3. The Amount and Substantiality of the Portion Used

The third fair use factor examines the amount of the copyrighted work used in an effort to
determine whether the “quantity and value of the materials used are reasonable in relation to the
purpose of the copying.”73 The use of an entire work does not preclude an activity from being a
fair use.74 The amount taken only need be “reasonable” and for a legitimate purpose.75

In Connectix and Sega, the Ninth Circuit found that copying a software program in its entirety in
order to understand its functional components was necessary to achieving a favored purpose, and
was therefore fair.76 Similarly, in Kelly v. Arriba Soft, the court emphasized that copying
anything less than an entire work would be insufficient in order to allow users to recognize
images in a visual search engine.77 In Perfect 10, the court concluded that Google’s use of
Perfect 10’s images was reasonable in light of its purpose of communication information to its
users.78 In both cases, the court found this copying to be fair use. And in Authors Guild, Inc. v.
HathiTrust, in which the plaintiffs participated in the scanning and electronic storage of
numerous books, the court held that the copying was reasonable in light of its purpose.79

For jailbreaking, the amount of code that must be copied and modified varies depending on the
device and firmware. In most cases, the portion of the firmware that must be permanently
modified to accomplish a jailbreak is a very small proportion of the overall code. The jailbreak
described by Dr. Gillula is typical: it involves using a security vulnerability in Android version
2.3 to install a small program that gives root privileges to the user.80 In some cases, the required

71 No. Civ.A. 02-571, 2007 WL 1485770, at *5 (E.D. Ky. Apr. 18, 2007) (on remand from Lexmark Int’l, Inc. v.
Static Control Components, Inc., 387 F.3d 522 (6th Cir. 2004)).
72 Id. (“Regardless of whether Lexmark’s [programs] were uncopyrightable lockout codes or not, SCC was
reasonable in initially believing that they were.”).
73 Campbell, 510 U.S. at 586-87.
74 Sega, 977 F.2d at 1526.
75 Campbell, 510 U.S. at 586.
76 Sega, 977 F.2d at 1526; Connectix, 203 F.3d at 605-06.
77 336 F.3d at 820-21. See also Field v. Google Inc., 412 F. Supp. 2d 1106, 1120-121 (D. Nev. 2006) (finding the
third factor weighing in favor of neither party because, while Google copied entire pages in its web caching service,
the amount used was necessary to the purpose).
78 508 F.3d at 1167-68.
79 755 F.3d at 98.
80 Gillula Statement at 2-3.

 12

modifications to the code are de minimis. For example, fewer than 50 bytes of code out of more
than 8 million bytes are altered in order to achieve interoperability for some versions of iOS.81
In short, the amount of code copied in the course of a jailbreak is necessary and reasonable for
the purpose of ensuring interoperability with third party applications. This reasonable use means
the third factor favors fair use, or is neutral. In prior rulemakings, the Register noted the minimal
importance of the third factor in this context: “In a case where the alleged infringement consists
of the making of an unauthorized derivative work, and the only modifications are as de minimis
as they are here, the fact that iPhone users are using almost the entire iPhone firmware for the
purpose for which it was provided to them by Apple undermines the significance of this
factor.”82

4. Effect on the Market for the Copyrighted Work

The fourth factor considers the direct harms caused by a particular use on the market or value of
the work at issue, and the potential harm that might result from similar future uses.83 Typically,
courts require either a demonstration of actual harm or a likelihood that harm will result.84 In
Sega, the court emphasized that Accolade sought to become a legitimate competitor in the field
of Genesis games and did not copy any of the elements of the Sega code that led to commercial
success.85 Moreover, consumers were likely to purchase more than one game, so sales of
Accolade games would not directly foreclose Sega sales.86 In Connectix, the court emphasized
the transformative nature of the Connectix platform and concluded that any market harm to Sony
would result from legitimate competition, not unfair copying.87

By the same token, jailbreaking does not foreclose sales of smartphone firmware, nor are users
jailbreaking their devices to compete in the marketplace for firmware sales. Mobile device
firmware is sold along with the devices themselves, not separately. A copy of Android or iOS is
of no use without a device to run it. Unlike some PC operating systems such as Microsoft
Windows, mobile operating system upgrades are not sold. They are generally made available to
device owners as a free download from the owner’s wireless carrier. Thus, jailbreaking does not
cause any proliferation of infringing copies, nor replace any sales of firmware.

Apple admitted in the 2010 rulemaking that jailbreaking had not harmed the sales or licensing of
iOS firmware.88 In the 2012 rulemaking, no mobile device manufacturer, mobile software
proprietor, or wireless carrier opposed an exemption, and no evidence of harm to the market for
mobile device firmware was presented.

There is no new evidence to the contrary; rather, sales of smartphones and tablets bundled with
their firmware have continued to climb rapidly.89 Moreover, the independent development

81 2010 Recommendation at 96.
82 2010 Recommendation at 97; 2012 Recommendation at 73.
83 Campbell, 510 U.S. at 590.
84 See, e.g., Universal, 464 U.S. at 451-52 (1984); Campbell, 510 U.S. at 590-92 (1994).
85 977 F.2d at 1523.
86 Id.
87 203 F.3d at 607.
88 2010 Recommendation at 99.
89 See supra Part 3.

 13

communities that have arisen under the protection of the jailbreaking exemption push the entire
mobile device industry towards improved performance, security, and functionality. As described
further below, many popular features of iOS, Android, and other systems were first created by
the jailbreaking community.90 The ability to jailbreak can also extend a device’s useful lifespan,
increasing its value and that of its copyrighted firmware.91 Far from harming the market for
device firmware, jailbreaking contributes to the success of that market.92

All four factors, including the important first and fourth factors, favor of a finding of fair use.
Jailbreaking smartphones for the purpose of installing lawfully acquired, interoperable software
is a non-infringing fair use.

6. Adverse Effects of the Ban on Circumvention: Security, Performance, Consumer

Choice and Competition Denied.

A return to the pre-2010 world in which mobile phone owners cannot jailbreak their devices
without risk of liability under § 1201(a)(1) would be a leap backwards for personal data security,
mobile innovation, consumer choice and competition. With the ability to jailbreak comes the
ability to benefit from the hard work and expertise of independent developers in addition to the
original manufacturer and carrier. A return to that prohibition would mean that phone owners
who seek greater control over the security, functionality, and customization of their devices,
beyond what the manufacturer and wireless carrier choose to provide, will again face legal
uncertainty.

A. Restoring the Ban on Circumvention Would Prevent Users From Fixing Security
Vulnerabilities That Phone Manufacturers And Carriers Do Not Fix.

Many security vulnerabilities on mobile devices occur in the operating system or other lower-
level software code—in other words, they occur in code that phone owners cannot modify
without jailbreaking. For example, the Heartbleed vulnerability, which was discovered in April
2014, allowed malicious websites to read the contents of a device’s memory, including
passwords and other private information. The vulnerability occurred in a software library used by
many programs, including many versions of Android.93 A vulnerability in iOS known as “Goto
fail,” which would allow criminals to impersonate secure websites such as banks and merchants,
was introduced into Apple devices in September 2012 but only identified in February 2014.94 A
non-exhaustive list of other security vulnerabilities that have occurred in mobile device firmware
is included in Exhibit A.95

While Google, Apple, and other maintainers of firmware generally fix vulnerabilities like these

90 See Part 6.D, infra.
91 See Part 6.A-C, infra.
92 There is evidence that computing devices that are able to run any application of the owner’s choice have higher
resale value than otherwise identical devices that lack that ability. Tim Cushing, DRM Destroys Value: Why Years
Old, But DRM Free, Devices Sell for Twice the Price of New Devices, Techdirt (Jan. 27, 2015),
https://www.techdirt.com/articles/20150123/13364529795/drm-devalues-products-jailbroken-apple-tvs-selling-
twice-price-latest-model.shtml.
93 Wikipedia, Heartbleed, http://en.wikipedia.org/wiki/Heartbleed (as of Feb. 4, 2015).
94 Rogers Statement at 1.
95 Exh. A, Part II; see also Rogers Statement at 3-4.

 14

once they are discovered, the fix often will not reach many mobile users for weeks or months, if
ever.96 For a given phone or tablet, manufacturers and wireless carriers typically bundle
operating system fixes and upgrades, including critical security fixes, into updates that are sent
no more than once or twice per year.97 Firmware upgrades released by manufacturers often take
six months or more to reach customers’ devices.98 And for Android devices, a given device will
typically only receive one or two such upgrades in its first year or two of use, and none
thereafter.99 Some devices receive no official upgrades at all after they are sold.100

The slow pace of official upgrades, and the practice of ceasing upgrades entirely for a device,
leave owners vulnerable. For example, in October 2012, university researchers announced their
discovery of a flaw in version 4 of Android that could allow an attacker to send forged text
messages to phones.101 Within days, Google released a new version of Android that would
prevent the attack. But four months later, only 1.4% of Android phones in use worldwide had
received the fix.102 A large proportion of devices never received the fix because manufacturers
and wireless carriers had stopped sending upgrades for those devices.103

Another group of vulnerabilities affecting Web browsers in 75% of all Android devices was
discovered in September 2014.104 Although Google released a fix, one month later, about 50% of
all Android devices remained vulnerable because wireless carriers did not deliver the fix.105

The only way phone owners can defend themselves against vulnerabilities in the operating
system (and other non-removable software) when wireless carriers don’t send a fix, or are slow
to do so, is to jailbreak the phone. Independent developer communities often fix vulnerabilities
and make the fixes available for download by users within days of discovery, but only jailbroken
phones can install most fixes distributed through independent channels. CyanogenMod makes
security updates from Google available almost as soon as they are released, but again, only
jailbroken phones can install them.106

Users who are concerned about the security of their device and information can leverage the
work of independent developers to limit their exposure to malicious hackers, but only if they can
jailbreak their devices. The ability to jailbreak without legal uncertainty is the ability to take

96 See Casey Johnston, The checkered, slow history of Android handset updates, Ars Technica (Dec. 21, 2012),
http://arstechnica.com/gadgets/2012/12/the-checkered-slow-history-of-android-handset-updates/; Rogers Statement
at 3.
97 Rogers Statement at 3.
98 See Johnston, supra note 96.
99 Id.; see also Exh. A, Part III (table of popular devices identifying the last Android version update sent by the
manufacturer).
100 Rogers Statement at 3.
101 Craig Timberg, “Fragmentation” leaves Android phones vulnerable to hackers, scammers, The Washington Post
(Feb. 3, 2013), http://www.washingtonpost.com/business/technology/android-phones-vulnerable-to-
hackers/2013/02/06/f3248922-6723-11e2-9e1b-07db1d2ccd5b_story.html.
102 Id.
103 Id.
104 Rogers Statement at 4.
105 Id.
106 About CyanogenMod, CyanogenMod, http://wiki.cyanogenmod.org/w/About (last visited Feb. 4, 2015)
(describing “nightly builds” of the CyanogenMod firmware).

 15

control of one’s own security.107

B. Restoring the Ban on Circumvention Would Impair Phone Owners’ Ability to
Secure their Personal Information.

Many mobile device users seek better control over the personal information their devices collect,
use, and share with the manufacturer and with third parties. Often, this requires jailbreaking. For
example, apps installed on an Android device request certain permissions, such as the ability to
read the phone’s physical location, access the camera or microphone, or to read the user’s text
messages.108 Typically, the user must either grant an app all of the permissions it requests or
refrain from installing it—in other words, there is no way for the user to exercise more precise
control over permissions. This is important because mobile apps often request more permissions
than they actually require, or use some permissions for unnecessary functions that violate the
user’s privacy (such as a game that surreptitiously reports a user’s messaging activity to
advertisers).109

An Android user who cannot jailbreak must agree to such invasions of privacy, or else refrain
from installing the app at all. But the user of a jailbroken device can install the AppOps
framework, a software package that allows selective control of the permissions granted to an
app.110

Some mobile users seek to safeguard their privacy by installing firewall software that restricts
the network communications that other software can engage in.111 Because these programs
monitor other programs on a device and access network communications at a low level, they
require jailbreaking. For iOS in particular, security enhancements like firewall software have
very limited effectiveness without jailbreaking.112 This is because iOS runs each application in
an isolated environment, or “sandbox.”113 While this practice often contributes to the security of
the system, it also prevents security-enhancing apps from monitoring the behavior of other,
possibly malicious apps or those that don’t respect the user’s privacy.114 Apps containing
malware have passed through Apple’s review process and been distributed through the iTunes

107 While jailbreaking itself often involves using a known security vulnerability to gain administrative access to a
device, once a device is jailbroken and modified to suit the owner, the vulnerability can be fixed and the phone “re-
locked.” See, e.g., scotty85, comment on How to Relock Bootloader, AndroidForums (Jan. 20, 2012),
http://androidforums.com/threads/how-to-relock-bootloader.486704/ (last visited Feb. 4, 2015).
108 See System Permissions, Android Developers,
http://developer.android.com/guide/topics/security/permissions.html (last visited Feb. 4, 2015).
109 See Alan Henry, Why Does This Android App Need So Many Permissions?, LifeHacker (Mar. 18, 2013),
http://lifehacker.com/5991099/why-does-this-android-app-need-so-many-permissions.
110 Gary Sims, App Ops – what you need to know, Android Authority (Dec. 16, 2013),
http://www.androidauthority.com/app-ops-need-know-324850/. This feature was included by Google in Android 4.3
but removed in Android 4.4.2 and is now available only through independent distributors.
111 See, e.g., Firewall iP, Cydia, http://cydia.saurik.com/package/com.yllier.firewall/ (last visited Feb. 4, 2015); see
also Rogers Statement at 4 (“There is a growing demand for mobile device firmware designed for high-security
operation.”).
112 Rogers Statement at 1.
113 Id.
114 Id.

 16

App Store.115 The ability to jailbreak without legal uncertainty allows for additional levels of
defense against malicious software when Apple’s own efforts fail.

C. Restoring the Ban on Circumvention Would Impair Phone Owners’ Ability To
Improve the Performance of their Devices By Removing Unwanted Software.

Mobile devices are sold with various kinds of software pre-installed by the manufacturer and
wireless carrier, often designed to drive traffic to particular subscription services or advertising
networks. A Time Magazine columnist reported that his Samsung Galaxy S5 phone, running
Android and sold by Verizon Wireless, contained three redundant text messaging apps, of which
he used only one.116 An HTC Android phone, he noted, ships with two redundant Web browsers,
as well as software that repeatedly asks the user to install a “browser bar” containing links to
advertisers.117
This software, which mobile users often refer to as “bloatware,” takes up valuable space in a
device’s memory. A class action lawsuit recently filed against Apple highlighted that iOS
devices advertised as having 16 gigabytes of storage are in fact shipped with as much as 23% of
their capacity filled with pre-installed, often unwanted software.118 The complaint also noted that
when a device’s storage is nearly full, iOS attempts to sell the owner additional “cloud” storage,
for a fee.119 Android devices suffer from this problem as well. A phone made by LG with 8GB of
storage left only 3.8GB free for music, video, photos, and apps selected by the owner.120

Bloatware can also slow down a device, both at startup and during normal operation, by running
in the background as the user runs other applications. For example, a Verizon Droid 4 evaluated
by EFF came pre-installed with an Internet radio application, a software backup assistant, a
personal task manager, the Google Play video player, and a turn-by-turn navigation app that
requires a separate monthly subscription.121 All of these apps began running when the phone
was turned on, consuming processor time and other system resources. In some cases, bloatware
can contain malicious code,122 or send personal information to third parties.123 Appendix A
contains a list of software pre-installed on a Verizon Droid 4 and the personal information that
each of these programs has access to.

115 Id.
116 Jared Newman, Friday Rant: The Ever-Sorrier State of Android Bloatware, Time (May 9, 2014),
http://time.com/94646/android-bloatware/.
117 Id.
118 Samuel Gibbs, Apple faces lawsuit over storage space on iPhones and iPads, The Guardian (Jan. 2, 2015),
http://www.theguardian.com/technology/2015/jan/02/apple-lawsuit-storage-space-iphones-ipad-ios8-software-
advertised-capacity.
119 Id.
120 Eugene Kim, LG G Vista Review, PC Mag, http://www.pcmag.com/article2/0,2817,2465558,00.asp (last visited
Feb. 4, 2015).
121 See Appendix A, Part 4.
122 Rogers Statement at 3 (describing the “Death Ring” malware, which was installed on devices somewhere in the
supply chain before retail sale).
123 Preston Gralla, Want to protect your Android phone? Here's how to kill its crapware, IT World (Nov. 6, 2014),
http://www.itworld.com/article/2833289/security/want-to-protect-your-android-phone--here-s-how-to-kill-its-
crapware-.html.

 17

Bloatware is often configured by the manufacturer or carrier to be non-removable by the user.124
This means that the only way for the user to avoid the storage, performance, and security
problems caused by bloatware is to jailbreak the device.

D. Restoring the Ban on Circumvention Would Impair Speech and Innovation.

Access controls that limit the functionality of software, or that allow only manufacturer-
approved software to run, inhibit speech and innovation when users cannot opt out of the
restrictions by jailbreaking.

Apple excludes software from its iTunes App Store (and thus from all non-jailbroken iOS
devices) based on Apple’s own, unreviewable decisions about an app’s expressive content. For
example, Apple has excluded a game with marijuana-related content,125 a game that depicts the
ongoing civil war in Syria,126 an app that reports the locations of U.S. military drone strikes,127
and a dictionary app (reportedly because it contained objectionable words).128 Apple also
rejected an app for searching photos because it made searching for nudity “too easy” despite
containing a “safe search” mode to exclude such results.129 While Apple is free to exercise
editorial discretion over the software it sells through its App Store, the access controls in iOS
take away the user’s discretion to access the creative expression and functionality of their
choosing. They also inhibit app developers’ ability to reach millions of customers, including
through highly creative and communicative software like games.

Device manufacturers also reject apps that compete with their own offerings. For example, both
Apple and Google reject applications that use payment systems run by other companies for the
purchase of digital goods.130 Apple rejects competing Web browsers, cloud storage services, app
choosers, and home screen alternatives from the iTunes Store, and thus from all non-jailbroken
iOS devices.131

124 Anna Scantlin, Non-removable bloatware still plagues Android, Phone Bill (Jan. 24, 2014),
http://www.phonedog.com/2014/01/24/non-removable-bloatware-still-plagues-android.
125 Casey Johnson, Apple pulls popular weed-growing game from App Store, Ars Technica (May 22, 2014),
http://arstechnica.com/gaming/2014/05/apple-pulls-popular-weed-growing-game-from-app-store/.
126 Matt Martin, Apple rejects game based on Syrian conflict, Gamesindustry.biz (Jan. 8, 2013)
http://www.gamesindustry.biz/articles/2013-01-08-apple-rejects-game-based-on-syrian-conflict.
127 Zachary Knight, Apple Feels Reporting Drone Strikes ‘Objectionable And Crude’ And Rejects App, Techdirt
(Aug. 31, 2012), https://www.techdirt.com/blog/wireless/articles/20120830/14470520223/apple-feels-reporting-
drone-strikes-objectionable-crude-rejects-app.shtml.
128 Mike Masnick, Apple Now Censoring A Dictionary iPhone App?, Techdirt (Aug. 6, 2009),
https://www.techdirt.com/articles/20090805/1832305780.shtml.
129 Tim Cushing, iNanny: Apple Takes Down Popular Photo Apps Because They Made Searching For Nude Photos
‘Too Easy’, Techdirt (Jan. 23, 2013),
https://www.techdirt.com/blog/wireless/articles/20130122/20232421758/inanny-apple-takes-down-popular-photo-
apps-because-they-made-searching-nude-photos-too-easy.shtml.
130 App Store Review Guidelines, Apple, https://developer.apple.com/appstore/resources/approval/guidelines.html;
Mike Masnick, Insanity: Apple Rejects Podcatching App Because It Has Flattr Integration, Techdirt (June 1, 2012),
https://www.techdirt.com/blog/wireless/articles/20120529/03062619097/insanity-apple-rejects-podcatching-app-
because-it-has-flattr-integration.shtml; Google Play Developer Program Policies, Google Play,
https://play.google.com/about/developer-content-policy.html.
131 Mike Masnick, Apple Rejecting Apps That Use Dropbox Because *Gasp!* Users Might Sign Up For Dropbox
Accounts, Techdirt (May 2, 2012), https://www.techdirt.com/articles/20120501/17545618733/apple-rejecting-apps-
that-use-dropbox-because-gasp-users-might-sign-up-dropbox-accounts.shtml; Steve Kovach, Frustration Builds

 18

Many popular software programs that don’t conform to the concept of a self-contained “app”
cannot be run on iOS or Android without jailbreaking. Alternate home screen designs and means
of selecting apps, improvements to the notification bar or screen, the ability to send and receive
text messages without leaving the current app, alternative ways of starting up the camera
function quickly, and other such changes are generally impossible without jailbreaking.132 Yet
these types of modifications are in high demand, in order to personalize a device and make the
owner’s most frequent tasks more efficient and readily available.133

Jailbreaking is also a necessary part of major software development projects. For example, many
versions of Android do not allow developers to use an important tool called a native code
debugger without the root privileges obtained by jailbreaking.134 Without a debugger, it is
difficult to diagnose software bugs when testing a program on multiple devices.135 Other
software development tools also require root privileges. For example, the Mozilla project, which
develops the Firefox Web browser and Firefox OS for mobile devices, wrote software to
simulate user input on a device.136 While Android provided a tool for simulating user input, it did
not meet Mozilla’s needs. The ability to jailbreak allowed Mozilla engineers to build and use a
better tool for testing their software before commercial release.137

The independent software development communities that have emerged under the protection of
an exemption for phone jailbreaking are a major source of creativity and innovation in the
mobile software field. Numerous features invented initially by independent developers, and
initially requiring a jailbreak, have since been adopted into manufacturer-sanctioned mobile
operating systems and are now considered integral features. CyanogenMod contributors built the
ability to access common settings from the pull-down notification area in 2010; the same
functionality was included in official Android versions in 2012.138 On iOS, popular features like
always-on voice recognition, interactive alerts, and alternative keyboards originated in the Cydia
ecosystem and were later incorporated into iOS itself.139 Appendix A contains examples of other
Android features that originated in the jailbreaking community.

With Apple's Inconsistent Rules For App Developers, Business Insider (Apr. 13, 2013),
http://www.businessinsider.com/the-story-of-apples-confusing-inconsistent-rules-for-app-developers-2013-4; Is
Firefox available for iPhone or iPad?, Mozilla Support, https://support.mozilla.org/en-US/kb/is-firefox-available-
iphone-or-ipad.
132 Freeman, supra note 15, at 3:09.
133 Britta Gustafson, Why did you jailbreak your iPhone?,” (Mar. 6, 2014),
https://www.youtube.com/watch?v=Te-uIolpNqA (last visited Feb. 4, 2015).
134 Willcox Statement at 1.
135 Id.
136 Id. at 2.
137 Id.
138 See Appendix A, Part 1.
139 Joe Rossignol, 15 jailbreak tweaks that iOS 8 made obsolete, iDownloadBlog (Jun. 3, 2014),
http://www.idownloadblog.com/2014/06/03/15-jailbreak-tweaks-that-ios-8-made-obsolete/; Luke Villapaz, Apple
iOS 8 Features Make Several Jailbreak Tweaks Obsolete With Custom Keyboards, Interactive Notifications And
Touch ID, International Business Times (Jun. 3, 2014), http://www.ibtimes.com/apple-ios-8-features-make-several-
jailbreak-tweaks-obsolete-custom-keyboards-interactive-1593829.

 19

E. Restoring the Ban on Circumvention Would Enforce Device Obsolescence,
Leading to Waste.

As noted above, Android manufacturers and wireless carriers stop sending firmware updates to a
phone after one, two, or (very rarely) three updates over a span of one to two years.140 Although
the device hardware will often have a much longer useful lifespan, the firmware becomes
obsolete as well as insecure. Without the ability to jailbreak, a customer’s only recourse is to
acquire a new device. Electronics waste is a serious and growing environmental problem that is
alleviated by the ability to update device firmware.141 Because a jailbroken Android device can
often run the most up-to-date version of Android, its useful life can be extended. For example,
the HTC Desire, which was launched in late 2010 with Android version 2.2,142 still has an active
developer community in 2015, and owners who jailbreak can load the latest version of Android
5.0.143

7. The Nonexclusive Factors of Section 1201(a)(1)(C) Support Granting An

Exemption.

A. The Availability for Use of Copyrighted Works

In considering this statutory factor, the Register examines whether “the availability for use of
copyrighted works would be adversely affected by permitting an exemption.” The Register also
“consider[s] whether a particular [non-infringing] use can be made from another readily
available format when the access-controlled digital copy of that ‘work’ does not allow that
use.”144

It can scarcely be questioned that mobile devices, device firmware, and mobile applications of all
kinds are enjoying a golden age. Smartphones are ubiquitous in the U.S. and the variety and
quality of software available for them, including operating system options, continues to grow.
For the past five years, the existence of an exemption to allow jailbreaking of phones without
legal uncertainty has coincided with the meteoric rise of the mobile software industry.145

The availability of software for smartphones or tablets would not be adversely affected by
preserving an exemption that allows users to jailbreak their devices to enable interoperability.
The Register previously agreed that jailbreaking to allow for interoperable software would
increase the availability of applications for smartphones “while simultaneously being unlikely to
interfere with the availability of smartphone operating systems or other works currently being

140 Casey Johnson, The checkered, slow history of Android handset updates, Ars Technica (Dec. 21, 2012),
http://arstechnica.com/gadgets/2012/12/the-checkered-slow-history-of-android-handset-updates/.
141 E-waste is the Toxic Legacy of our Digital Age, IFIXITORG, http://ifixit.org/ewaste.
142 Vlad Sevov, HTC Desire HD review, Engadget (Oct. 27, 2010), http://www.engadget.com/2010/10/27/htc-desire-
hd-review/.
143 Update HTC Desire HD to Android 5.0 Lollipop CM12 Preview Custom ROM, Team Android (Dec. 14, 2014),
http://www.teamandroid.com/2014/12/14/update-htc-desire-hd-android-50-lollipop-cm12-preview-custom-rom/.
144 Recommendation of the Register of Copyrights in RM 2005-11, at 21-22, Rulemaking on Exemptions from
Prohibition on Circumvention of Copyright Protection Systems for Access Control Technologies (Nov.17, 2006)
[hereinafter “2006 Recommendation”].
145 See Part 3, supra.

 20

used or created for wireless communications devices.”146

The ability to jailbreak has never been shown to contribute significantly to copyright
infringement. Android devices, whether jailbroken or not, have long given users the ability to
load application software from any source.147 Jailbreaking an Android device, which simply
gives programs on the device more capabilities, and more ability to interoperate with other
programs, does not facilitate the use of infringing software. For iOS, the availability of thousands
of popular software packages that require jailbreaking and which are licensed as free and open
source software, as well as proprietary software sold commercially through markets like
Cydia,148 demonstrate that the ability to jailbreak does not encourage infringement.

Nor does jailbreaking contribute to infringement of media such as video and e-books on a mobile
device. These media are typically protected by their own proprietary digital rights management
(DRM), separate from those in the bootloader and operating system. For example, video and
apps purchased through the Google Play Store, iTunes Store, and Amazon.com are subject to
specialized DRM mechanisms that reside in part on the servers of the digital content
marketplace.149 Jailbreaking does not circumvent this type of access control.

The lack of an exemption would likely decrease the appeal of smartphones for many consumers
and innovators. Without an exemption, users concerned about § 1201 liability will be narrowly
confined to the functionality of applications distributed only through authorized channels, and
will be unable to avail themselves of the many kinds of third party applications currently on the
market. And fewer features and innovations arising from the independent developer community
will find their way into manufacturer-authorized software.

Recognizing the importance of the ability to jailbreak, and underscoring its beneficial effects on
the markets for mobile computing firmware and software, two device manufacturers, Nexus and
HTC, now provide straightforward means of jailbreaking their devices.150 While encouraging,
this development does not eliminate the adverse effects of the ban on circumvention, for several
reasons. The Register’s speculation in 2012 that “[p]erhaps in the ensuing three years …
unlocked devices will become the rule rather than the exception” has not come to pass.151 The
vast majority of mobile devices sold in the U.S. cannot be jailbroken without circumventing
access controls. For those devices, circumvention is a necessary step in avoiding the security and
performance problems described above, and for adding functionality. In addition, some hardware
features may only be available on devices that require jailbreaking through a security
vulnerability. Replacing one’s phone with a model that can be jailbroken with the manufacturer’s

146 2010 Recommendation at 102.
147 Jerry Hildenbrand, What is Sideloading?, Android Central (Feb. 2, 2012), http://www.androidcentral.com/what-
sideloading-android-z.
148 See Bob Bhatnagar, How to Purchase / Install iOS Jailbreak Apps from Cydia, iPhoneFaq, (Feb. 24, 2013),
http://www.iphonefaq.org/archives/972432.
149 Gillula Statement at 3.
150 Joseph Volpe, Galaxy Nexus gets rooted, forums burst into applause, Engadget (Nov. 3, 2011),
http://www.engadget.com/2011/11/03/galaxy-nexus-gets-rooted-forums-burst-into-applause/; Unlock Bootloader,
HTCdev, http://www.HTCdev.com/bootloader/.
151 2012 Recommendation at 76 (referring to devices that can be jailbroken on demand with the manufacturer’s and
carrier’s blessing).

 21

permission often means waiting months or years for the end of a mobile service contract, or
paying a substantial early termination fee. A device that could serve its owner’s needs if
jailbroken may instead end up in a landfill.

Moreover, even those devices that can be jailbroken with a simple tool provided by the
manufacturer when purchased directly from the manufacturer generally cannot be jailbroken in
this manner when purchased from a wireless carrier.152 Without an exemption, under some court
precedents, the wireless carrier may have standing to bring (or threaten) an action for violation of
§ 1201(a)(1), even if the carrier does not hold copyright in the firmware.153

B. The Availability for Use of Works for Nonprofit Archival, Preservation, and
Education Purposes

The availability of mobile device firmware for nonprofit purposes will not be harmed by an
exemption that permits jailbreaking to enable interoperability. Consistent with the Register’s
prior conclusions regarding smartphones,154 this factor is not relevant.

C. The Impact on Criticism, Comment, News Reporting, Scholarship or Research

An exemption that permits smartphone users to jailbreak their devices would improve the
availability of copyrighted works for criticism, comment, news reporting, teaching, scholarship,
and research. Mobile device jailbreaking has spurred both valuable commentary and important
security research. For example, independent developers and researchers needed the ability to
jailbreak to understand and fix many of the vulnerabilities described above.155 Also, as described
above, content-based editorial decisions by mobile software markets like Apple’s App Store
sometimes exclude software that expresses political commentary. A renewed exemption to
permit jailbreaking would help device owners access the criticism and commentary of their
choosing. As found in prior rulemakings, this factor also favors an exemption.156

D. The Effect on the Market for, or Value of, Copyrighted Works

Nothing in the factual record suggests that this factor has changed since the prior rulemaking
with respect to smartphones. As we explained in our analysis of the fourth fair use factor,
allowing users to jailbreak both smartphones and tablets will have no negative impact on the
actual market for the firmware on mobile devices. Instead, the proposed exemption is likely to
stimulate the market for such works by providing developers with incentives to develop third
party applications, thus making these devices— together with their copyrighted firmware—more
attractive to consumers. The ability to develop and use independent applications on mobile

152 See, e.g., Frequently Asked Questions, HTCdev, http://www.HTCdev.com/bootloader/faq (“[C]ertain models
may not be unlockable due to operator restrictions.”).
153 Echostar Satellite, L.L.C. v. Viewtech, Inc., 543 F. Supp. 2d 1201, 1205 (S.D. Cal. 2008); CoxCom, Inc. v.
Chaffee, No. CIVA 05-107S, 2006 WL 1793184, at *11 (D.R.I. June 26, 2006); Comcast of Illinois X, LLC. v.
Hightech Electronics, Inc., No. 03 C 3231, 2004 WL 1718522, at *6 (N.D. Ill. July 29, 2004).
154 2010 Recommendation at 101; 2012 Recommendation at 77.
155 See also Peter Eckersley and Jeremy Gillula, Is Your Android Device Telling the World Where You've Been?,
Electronic Frontier Foundation (July 21, 2014), https://www.eff.org/deeplinks/2014/07/your-android-device-telling-
world-where-youve-been (describing a vulnerability in Android that required root privileges to diagnose).
156 2010 Recommendation at 102; 2012 Recommendation at 77.

 22

devices increases the value of the devices and their firmware. Jailbreaking has also spurred new
and vibrant markets for mobile software in general, including Cydia and the CyanogenMod
community. Microsoft Corporation recently made a $70 million investment in CyanogenMod
which values the company in the hundreds of millions.157 This value arose from the demand for
independently created mobile software that requires jailbreaking.

E. Other Factors

Manufacturers do not put access controls on smartphones and tablets to protect the copyrighted
firmware. Rather, those controls exist to preserve various aspects of the manufacturers’ and
mobile carriers’ business interests—interests the Register has already determined to be unrelated
to infringement. In both 2006 and 2010, the Register frowned on firmware manufacturers
advancing copyright claims in their functional computer programs to support anti-competitive
business practices. The Register recognized in 2006 that

when application of the prohibition on circumvention of access controls would
offer no apparent benefit to the author or copyright owner in relation to the work
to which access is controlled, but simply offers a benefit to a third party who may
use § 1201 to control the use of hardware which, as is increasingly the case, may
be operated in part through the use of computer software or firmware, an
exemption may well be warranted.158

Again in 2010, she stated that

while a copyright owner might try to restrict the programs that can be run on a
particular operating system, copyright law is not the vehicle for imposition of
such restrictions, and other areas of the law, such as antitrust, might apply. It does
not and should not infringe any of the exclusive rights of the copyright owner to
run an application program on a computer over the objections of the owner of the
copyright in the computer’s operating system.159

The same analysis supports the granting of a renewed exemption in favor of smartphone owners
who want to run lawfully obtained software of their own choosing. Granting the exemption will
not impair the legitimate copyright interests of those who create the firmware. At the same time,
an exemption would vindicate the strong public interest in fostering competition in the software
market, thereby encouraging innovation and expanding consumer choice.

8. Documentary Evidence

Please see the appendix filed with these comments.

157 Davey Alba, Microsoft to Invest in Android Startup Cyanogen, Says Report, Wired (Jan. 29, 2015),
http://www.wired.com/2015/01/microsoft-invest-android-startup-cyanogen-says-report/.
158 2006 Recommendation at 152.
159 2010 Recommendation at 96-97.

	
 1

Appendix A

Supplemental Material on Jailbreaking
Compiled by Dr. Jeremy Gillula

1. The following are popular features that were implemented by developers in the
CyanogenMod jailbreaking community and were later incorporated into official Android
releases:

• Power widgets and settings accessible directly from the pull-down notification
area were implemented in Cyanogenmod 6.0.0, based on Android 2.2.X (Froyo),
on August 28, 2010. The feature was later introduced into Android 4.2 (Jelly
Bean), which was released November 13, 2012.

• A rotary lockscreen with the ability to unlock and immediately launch specific
apps (camera, messaging, email etc.) was implemented in Cyanogenmod 7.0.0,
based on Android 2.3.3 (Gingerbread) on April 10, 2011. The feature was made
part of Android 4.0 (Ice Cream Sandwich), released on October 18, 2011.

• The ability to dismiss individual notifications from the notification area by
swiping them was implemented in Cyanogenmod 6.1.0, based on Android 2.2.1
(Froyo) on December, 6, 2010. It was also introduced into Android 4.0 (Ice
Cream Sandwich), released on October 18, 2011.

2. The following are examples of security vulnerabilities that affect older versions of
Android and have been fixed in subsequent releases. Some devices retain these
vulnerabilities because the manufacturer and carriers have ceased to send updates

• A bug in the built-in Android Web browser (and any app that uses the built-in
WebView component to, e.g., display web pages from within the app), which
allows malicious sites to access cookies and other info from other sites users have
visited. This bug could allow, for example, a malicious website to steal an identity
token used by a different website and use it to impersonate the user)

i. News article: http://arstechnica.com/security/2014/09/android-browser-
flaw-a-privacy-disaster-for-half-of-android-users/

ii. Patches in official Android source code:
1. https://android.googlesource.com/platform/external/webkit/+/1368

e05e8875f00e8d2529fe6050d08b55ea4d87
2. https://android.googlesource.com/platform/external/webkit/+/7e44

05a7a12750ee27325f065b9825c25b40598c
• The POODLE vulnerability, announced in September 2014 was fixed in

CyanogenMod 11 M12 on 11/13/2014 (see http://www.cyanogenmod.org/blog/cy
anogenmod-11-m12).

• Many vulnerabilities affecting old versions of Android (earlier than version 3)
which are fixed in modern versions. Many of the phones listed in part 3 below,
and the tablets in part 4, remain vulnerable to these vulnerabilities if they cannot
be jailbroken:

	
 2

i. http://www.cvedetails.com/cve/CVE-2010-4832/
ii. http://www.cvedetails.com/cve/CVE-2011-1149/

iii. http://www.cvedetails.com/cve/CVE-2010-4804/
iv. http://www.cvedetails.com/cve/CVE-2011-0680/
v. http://www.cvedetails.com/cve/CVE-2011-1350/

vi. http://www.cvedetails.com/cve/CVE-2011-1352/
vii. http://www.cvedetails.com/cve/CVE-2011-1823/

viii. http://www.cvedetails.com/cve/CVE-2011-2357/
ix. http://www.cvedetails.com/cve/CVE-2011-3874/
x. http://www.cvedetails.com/cve/CVE-2011-4276/

xi. http://www.cvedetails.com/cve/CVE-2012-4221/
• Finally, a bug in the pseudo-random-number-generator (PRNG) in the widely

used cryptography library OpenSSL, which provides secure Web browsing and e-
commerce, was fixed in Android 4.4 but remains in earlier versions. See
http://www.cvedetails.com/cve/CVE-2013-7373/

3. This is a chart of popular models of smartphone, showing the first and last versions of
Android supplied through the manufacturer’s authorized channels, and the version of
Android that can be installed on a jailbroken device. For example, the table shows that a
non-jailbroken Samsung Captivate can only run Android 2.3, released December 6, 2010,
while the same device can run a derivative of Android version 4.4, released on October
31, 2013. Jailbreaking would allow a Samsung Captivate owner to enjoy the fruits of 35
additional months of Android development.

Phone Name Release Date Initial
Android
Version

Final Version
Supported by
Manufacture
r

Version
Usable After
Jailbreak

Motorola Droid
3 (Notable for
hardware
keyboard)

Jul. 14, 2011 2.3
(Gingerbread)
Dec. 6, 2010

2.3
(Gingerbread)
Dec. 6, 2010

4.2 (Jelly
Bean)
Nov. 13, 2012

Motorola Droid
Razr

Nov. 11, 2011 2.3
(Gingerbread)
Dec. 6, 2010

4.1 (Jellybean)
July 9, 2012

4.4 (KitKat)
Oct. 31, 2013

Samsung
Captivate

June 4, 2010 2.1 (Eclair)
Jan. 12, 2010

2.3
(Gingerbread)
Dec. 6, 2010

4.4 (KitKat)
Oct. 31, 2013

HTC Droid
Incredible

Apr. 29, 2010 2.1 (Eclair)
Jan. 12, 2010

2.3
(Gingerbread)
Dec. 6, 2010

4.4 (KitKat)
Oct. 31, 2013

LG Optimus 2X Dec. 16, 2010 2.2 (Froyo)
May 20, 2010

4.0 (Ice Cream
Sandwich)
Oct. 18, 2011

4.2 (Jelly
Bean)
Nov. 13, 2012

	
 3

 This is a chart of popular tablets, showing the same information:

Tablet Name Release Date Initial Android
Version

Final Version
Supported by
Manufacturer

Version
Usable After
Jailbreak

Acer A700 June 13,
2012

4.0 (Ice Cream
Sandwich)

4.0 (Ice Cream
Sandwich)
Oct. 18, 2011

4.4 (KitKat)
Oct. 31, 2013

Asus Eee Pad
Transformer

Apr. 26,
2011

3.1
(Honeycomb)
May 10, 2011

4.0 (Ice Cream
Sandwich)
Oct. 18, 2011

4.3 (Jelly
Bean)
July 24, 2013

Samsung
Galaxy Tab

Sep. 2, 2010 2.2 (Froyo)
May 20, 2010

2.3
(Gingerbread)
Dec. 6, 2010

4.1 (Jelly
Bean)
July 9, 2012

Samsung
Galaxy Note

Apr. 29,
2010

4.1 (Jelly Bean)
July 9, 2012

4.1 (Jelly Bean)
July 9, 2012

4.4 (KitKat)
Oct. 31, 2013

4. This is a list of some of the pre-installed software on a Verizon Droid 4.
• Software that people might not want for privacy reasons, but which cannot be

uninstalled without root privileges:
i. Facebook, which hase access to contacts, call log, location, camera, audio

ii. NFL Mobile, which can send SMS; read SMS, location, and phone ID;
view Wi-Fi networks in range; and view what other apps are running

iii. Slacker Radio, which runs at startup, can read phone ID, receive data from
the Internet, and view Wi-Fi networks in range

iv. Amazon Kindle, which can read what accounts are on the device, and
view Wi-Fi networks in range

v. Forest Wallpaper, which can read GPS location
vi. Google+, which can access contacts, accounts, location, ID, audio, and

video; download files without notifying the user; etc.
• Software that runs at startup (and thus slows the device down)

i. Slacker radio
ii. Verizon’s backup assistant

iii. Tasks
iv. Google Play Movies & TV
v. VZ Navigator (Verizon’s custom map app you have to pay to use)

	
 1

Statement of Dr. Jeremy Gillula

February 6, 2015

 My name is Jeremy Gillula. I am a Staff Technologist at the Electronic Frontier
Foundation, where my duties include developing privacy-enhancing technologies (including for
mobile devices); analyzing new products and services at a technical level for their impact on
privacy, civil liberties, and innovation; and educating and explaining how new technologies work
so that my non-technical colleagues (and the general public) can gain a better understanding of
their operation. As a technologist I am intimately familiar with the theory and practice of
computer science, including the workings of mobile operating systems. Prior to working at EFF,
I obtained my doctorate and master’s degrees in Computer Science from Stanford University,
and a bachelor’s degree in Computer Science from Caltech.

I am submitting this statement to the Copyright Office to support a continued exemption
to the ban on circumventing access controls in order to root/jailbreak mobile phones, as well as
in support of a new exemption for jailbreaking/rooting other mobile devices, such as tablets. (For
the purposes of this statement I will refer to mobile phones and other devices which run mobile
operating systems collectively as mobile devices.) In this statement I will explain from a
technical perspective how the process of jailbreaking/rooting may circumvent access controls.

 There are essentially three separate (but similar) terms used when it comes to
circumventing access controls on mobile devices:

• “Rooting” refers to the process by which one acquires privileged access (root) on the
mobile device’s operating system (OS). As with desktop OSes like Windows, OS X, and
Linux, mobile OSes like iOS and Android typically separate users into two classes:
regular users and administrators or “root” users. Apps running as a regular user can only
access a limited subset of the OS’s functionality, while programs running with root
privileges can effectively access or modify any file within the OS.

• “Jailbreaking” is a similar process to rooting, but is typically used only to refer to such a
process on non-Linux-based devices (e.g. iOS). Jailbreaking typically allows a user to
circumvent some of the access controls on the mobile device, but does not provide them
complete access to modify the OS at will. (For example, jailbreaking an iOS device
allows one to install third party apps, but not to change most other low-level behavior of
iOS.) In this sense, jailbreaking is a more limited form of rooting. Despite this, rooting
and jailbreaking are very similar, and most of the occurrences within this statement of
one of these terms could be substituted with the other.

• “Unlocking a bootloader” refers to a process by which one modifies low-level firmware
on a mobile device to allow it to boot an OS of the user’s choosing.1 In order to actually

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 A confusingly similar term, “unlocking,” refers to the process by which one modifies a device so that it can be
used on a different mobile carrier than the one it was originally programmed for (e.g. “unlocking” a phone that was

	
 2

load an OS into the device’s memory so that it can be booted, mobile devices make use of
low-level system code called a bootloader (much like the BIOS on a PC). A “locked”
bootloader will typically verify that the OS it is booting has not been modified, by
checking its cryptographic signature. If the code comprising the OS has been changed,
the bootloader will restore the original OS from a read-only source. In order to load a
different OS (such as CyanogenMod or another customized version of Android) one must
first disable this verification. This process is called “unlocking the bootloader.”

 Most mobile devices are sold with a locked bootloader and without the ability of the
consumer to gain root privileges. As a result, the only way to gain root access to a mobile device
or to unlock its bootloader is to find a security vulnerability (also known as an exploit) in the
code the device runs, either at the OS level or at the bootloader level.2 In both cases, for the
exploit to be successful it has to allow the user to run an arbitrary program with the capability of
modifying the underlying OS or the bootloader. (Remember: normally the user is prevented from
running programs that can modify the OS or the bootloader.)

 To illustrate in more detail how such an exploit works, I will describe at a high level the
inner workings of the “Gingerbreak” exploit, which was discovered in April 2011 and allows
users to gain root access to Android devices running Android version 2.3 (AKA Gingerbread).3

 Gingerbreak works as follows:

1. In Android 2.3, a bug exists in the part of the OS which is responsible for managing SD
cards (storage media that can be installed in a mobile device). This part of the OS must
run with root privileges in order to do its job, but also must be able to be triggered and
take inputs from a normal user in order to allow users to mount and unmount SD cards.

2. Because of the particular structure of this bug, a user can carefully craft an input to this
buggy part of the OS which will cause the OS to run any program the user likes. (If the
OS did not have the bug, this would not be possible: this part of the OS would only do
what it was designed to do, manage SD cards, and would reject any invalid input.)

3. Since this part of the OS runs with root privileges, the program the user chooses will also
run with root privileges.

4. Gingerbreak exploits this vulnerability by creating an input which takes advantage of the
bug and causes the OS to run a program which will permanently install an executable
called “su” (short for “super-user,” another term for root). Normally a regular user would
be unable to install “su,” because installing it requires access to parts of the OS that

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

originally sold for use on AT&T’s network so that it can be used on T-Mobile’s network). “Unlocking” is not a
necessary precondition for rooting, jailbreaking, or bootloader-unlocking, or vice versa.
2 Some manufacturers are beginning to change this policy. For example, Google Nexus devices allow users root
access without needing to first take advantage of a security vulnerability. Devices that allow such freedom remain
the exception rather than the rule, however.
3 For more technical detail, see https://xorl.wordpress.com/2011/04/28/android-vold-mpartminors-signedness-issue/

	
 3

require root privileges to modify. However, per the previous step, the program that
installs “su” is running with root privileges via the vulnerability in the OS.

5. “su” is a program that can be run by a normal user. It takes as input the location of a
program to run, and then runs that program with root privileges.

6. As a result, once the Gingerbreak code is run, any time in the future a normal user wishes
to run a program that needs access to root privileges, they simply call that program via
“su.” Thus, the user now has complete access to root privileges on their mobile device.

 This pattern is typical for root exploits: a part of the OS is found that takes input from the
user, but which also contains a bug which allows the user to run an arbitrary program. By
carefully crafting the input, the user gets the OS to run a program that modifies the OS so that the
user can easily make use of root privileges in the future.

 Jailbreaking typically follows a similar pattern. Additionally, root access typically allows
one to modify the bootloader. Thus, once a mobile device is rooted, one can typically unlock the
bootloader, and then load a modified OS of one’s choosing.4

 In this way, rooting, jailbreaking, and bootloader-unlocking require the circumvention of
access controls. These processes take advantage of vulnerabilities in the OS to run code that the
manufacturer or carrier did not intend to be run, allowing the user to make changes that are not
authorized by the manufacturer or carrier—changes that allow users much greater freedom in the
use of their mobile devices as well as enhanced security.

While jailbreaking and rooting do provide device owners with a wide latitude over what
software can run on their devices, that control is not absolute. For example, the process of
jailbreaking/rooting does not circumvent the access controls associated with digital markets such
as Apple’s App or iTunes Stores, or Android’s Google Play or the Amazon Appstore. This is
because part of the access controls associated with these markets resides on the servers of the
associated companies. In order to acquire a paid app, movie, etc., from one of these markets, the
device sends a request to the server running the given market. Software running on that server
then checks to see if the request is valid (usually by checking a database to see if payment has
been successfully processed for the user’s account), and if so, provides the device with the
appropriate download. If the server determines that the request is invalid, the user simply cannot
download the requested content. (Additionally, some of these markets periodically verify that a
user is still authorized to run a given app; without the check, the app will no longer function.)
Because rooting/jailbreaking only affects the software running on the device, and does not affect
the software running on the market’s server, there is no way for a user to acquire content without
permission as a direct result of the rooting/jailbreaking process—the two issues are simply not
connected.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4	
 The reverse is also possible. If a vulnerability in the bootloader allows the user to run arbitrary code, the user can
unlock the bootloader, and then run a custom OS that is already designed to give the user root access.

	
 1	

Statement of Marc Rogers
February 6, 2015

My name is Marc Rogers. I hold the position of Principal Security Researcher at

CloudFlare, Inc., an Internet Security Company and “Content Delivery Network” or CDN. A few
years prior to my tenure in CloudFlare I worked for Vodafone UK PLC, a global
telecommunications company and mobile network operator, where I was responsible for
architecting and ensuring the security of Internet-facing or mobile device-facing content services.
As well as being responsible for the security of these mobile device services, I was also
responsible for ensuring the security of the devices themselves.

I am submitting this statement to the Copyright Office to support a continued exemption

to the ban on circumventing access controls in order to jailbreak mobile phones, and a new
exemption for jailbreaking tablets.

As a developer, I consider smartphones and tablets to be variations on the same basic

device. From a hardware perspective, only two processor architectures dominate the market,
ARM and x86, with the vast majority of mobile devices running on ARM, while, from a
software perspective, two mobile device operating systems represent 90% of the market on both
phones and tablets – Android, and iOS.

Modern smartphones and tablets are feature-rich but are not designed for users with high

security requirements. Apple’s iOS contains access controls that prevent developers from
accessing lower-level functionality of the device. Because of this limitation, there is little or no
research and innovation in iOS security taking place outside of Apple. As a result, vulnerabilities
in iOS can persist (while possibly being exploited by wrongdoers) before the security community
learns of them and calls for a fix. One of the most serious examples of these persistent
vulnerabilities was the Apple SSL vulnerability known as “Goto fail.” This vulnerability was a
flaw in the Secure Sockets Layer (SSL) code that provides privacy and security for sensitive
traffic on the Internet – for example, online shopping. This flaw was introduced in September
2012 but was only identified in February 2014 after third-party security testing. An extremely
serious issue, the whole time this flaw existed, it was possible for criminals to impersonate
legitimate sites in order to steal information such as personally identifying information (“PII”) or
cardholder data.

The third-party security tools that do exist for iOS are limited in their usefulness because,

like all software for iOS, they cannot access lower-level functionality – something that is
necessary to detect many security threats. For example, one of the core security defenses in iOS
is the fact that every application runs in its own isolated environment or sandbox. In theory, this
helps prevent malicious code from affecting other applications. However, the downside is that
security applications are unable to affect the malicious code either. This means malicious code
successfully downloaded onto an iPhone will run undetected for an indefinite amount of time.
Apple’s position that security applications are unnecessary because their system prevents the
installation of malicious code is flawed. In September 2013, researchers from Georgia Tech
demonstrated using an application called “Jekyll” that it was possible to disguise a malicious app
in a way that it could successfully be uploaded to the Apple App Store and subsequently installed

	
 2	

onto any iPhone that downloaded it. Even more recently, in November of 2014, a piece of
malware known as “WireLurker” was found that could infect iPhones by exploiting a flaw in
Apple’s desktop operating system, OSX. iPhone malware clearly exists and at present no
security vendor is able to provide any on-device protection without jailbreaking and
subsequently rooting the iPhone first. This means the only way to protect unjailbroken users
from iOS malware at present is a convoluted and slow process involving a third-party security
company identifying the malware, reporting it to Apple, convincing Apple that it is malware and
then waiting for Apple to act. This process can take weeks or even months. By contrast, on a
device that has been jailbroken, as soon as a third-party vendor identifies malware, it pushes
signatures to all the devices running its security software and the malware is instantly disabled.

Researching and improving the security of devices that run the Android operating system

also requires low-level access to the device. The security challenges with Android are in some
ways the opposite of those facing researchers or security vendors on iOS. On Android, its is
possible for a user to install applications from sources other than Google, and it is possible for
those applications to be given permission to access and even modify the code of other installed
applications. However, this “open” architecture means that malicious code can also be installed.
Furthermore it means that this malicious code is able to run at a very low level, and in a way that
can affect much of the legitimate code or applications on the device. The only way to get ahead
of this problem is to ensure that the security controls or code running on the device run at an
even lower level and do so in a way that they cannot be interfered with. Unless security software
runs at a sufficiently low level it can be blocked, disabled, fooled and even removed completely
by malicious code, or a malicious attacker. For most devices, avoiding those limitations requires
the device owner to jailbreak and subsequently “root” the device by bypassing or defeating
access controls in the device firmware.

Most modern devices employ a security control known as a “secure bootloader.” When

the device is powered on, the bootloader is responsible for configuring the device so that it can
load the device Operating System (“OS”), and then, subsequently, for loading the OS itself. A
secure bootloader is cryptographically signed and locked with a password to prevent
modification. It also performs integrity checks before unlocking the device OS so that it can be
loaded. This architecture means that unless the security controls on the bootloader are disabled it
is not possible to modify the OS or even boot a different OS.

Without bypassing these controls in the bootloader, there is no practical way to install a

new operating system on a device or change the operating system to give application programs
more capabilities.

In many cases although the device is locked when it reaches the consumer it is unlocked

during various stages of the device’s manufacturing process so that the device manufacturer and
device reseller can customize the device with their own branding and add any bundled free
applications. As a result attackers have recently started attacking the Android device supply
chain after realizing that by infecting a device manufacturer or reseller they can inject malware
into the device firmware while it is unlocked. This is very bad for consumers as while Android
security applications are given substantial access to the OS and Applications, they are not given
full access to the system firmware. This means that while they can detect malicious code within

	
 3	

the firmware they are unable to do anything about it. There have been several examples of
malware like this in the wild, the most recent of which is a piece of malware discovered in
December 2014 called “DeathRing.” This malicious application allows the people controlling it
to remotely control affected phones and steal PII from the legitimate device owner. Because
“DeathRing” is installed in the devices’ firmware somewhere in its supply chain, the only way to
remove it is by jailbreaking the device in order to allow security applications to make changes to
the firmware.

Malware is not the only security problem that affects mobile devices. Increasingly,

security vulnerabilities are being found in the applications and firmware installed on mobile
devices. While ordinary application vulnerabilities can be fixed by an update from the
application manufacturer, vulnerabilities in the firmware are a much more complicated problem.
In most cases, the only options are to wait for a patch from the device manufacturer or reseller or
to jailbreak the device. In the case of older devices or new devices from certain vendors where
patches are not provided, jailbreaking is the only way to secure the device.

These limitations lead to security problems. Major device manufacturers and wireless
carriers rarely, if ever, send updates to the operating system on a device after it is purchased.
Some “whitelabel” devices released by well-known Chinese vendors never even receive a single
update. This means that as security vulnerabilities are discovered in different flavors of the
Android operating system, many mobile device users will not receive fixes and will remain at
risk. Without the ability to bypass access controls in the bootloader, many thousands of devices
in use cannot be made secure against well-known vulnerabilities.

In the case of the critical vulnerability “Heartbleed” found in April 2014, despite a rare

intervention by Google, many devices running version 4.1.1 of Android on non-Google-
supported phones are still vulnerable to Heartbleed a year later. Heartbleed is an extremely
serious vulnerability, which allows an attacker to steal information straight out of the memory of
an affected device. The only way to fix the Heartbleed vulnerability on these non-Google
supported phones is by jailbreaking the device.

Another example worth noting is the pair of “Same Origin Policy” browser

vulnerabilities that were found to affect the web browser in all Android devices earlier than
version 4.4. These flaws were described as “a privacy disaster,” because they enabled malicious
code running on a web page to read data from any other webpage loaded into the same browser,
such as pages loaded in other tabs. This meant the malicious page could steal information, such
as cookies or credentials, allowing an attacker to hijack banking sessions or read data from
secure webmail pages. Discovered on the 1st September 2014, these flaws affected more than
75% of the approximately 1 billion Android devices currently active. A month after Google
released its patch around 50% of all Android devices remained vulnerable. This is because,
despite Google patching the vulnerability, device manufacturers and resellers still had to take it,
process it, and push it out to users before the devices could be patched. This burden on the
manufacturer to integrate the patch leads to a phenomenon known as Android fragmentation
where some device manufacturers take months to update their custom version of Android while
others may never update at all. The only option available to a user in this situation is to jailbreak
the device, and then patch or disable the affected software by hand.

	
 4	

There is a growing demand for mobile device firmware designed for high-security
operation. The vast majority of vulnerabilities found in mobile devices are in third-party
applications or software. By creating a custom version of the firmware that removes these
applications, it is possible to massively reduce the attack surface area. As an added bonus, this
also significantly improves the performance of the device. Furthermore, for security software to
be truly effective, it has to run at the lowest level possible and in a way that can’t be tampered
with. By building security applications into the firmware part of a mobile device, it is possible to
come very close to achieving this. Security software installed in the device firmware cannot be
easily disabled by malicious applications or code and, just as importantly, cannot be easily
disabled or removed by a malicious third party, such as a phone thief.

Finally, customization of devices, such as changing phone dialer applications, adding

enterprise features, or changing what runs on the phone from a performance perspective, also
requires low-level or “root” access to a jailbroken phone. This form of customization is
increasing in popularity. One such popular customized firmware, known as “cyanogenmod,” has
been installed on more than 12 million devices, making it the third-largest firmware distribution
after regular Android and iOS. Cyanogenmod can only be installed on jailbroken Android
phones.

In conclusion, a device owner’s ability to “jailbreak” or get “root” access shouldn’t be

limited to a small number of devices for which the manufacturer provides an easy way to enable
it. For most of the millions of devices in use in the U.S., there is no way to access low-level
functionality or replace the operating system, leaving the owners of these devices unable to
improve their own security or functionality without buying a new, often more expensive, device.
Also, many people need secure devices that are not easily identifiable as such. In some regions
of the world, possession of readily identified security devices can lead to arrest under spying
charges. This means devices manufactured as highly secure with features advertised specifically
as a way to avoid government surveillance, such as the “Blackphone,” can be extremely
dangerous to carry. By applying a secure operating system to a regular mainstream device, a user
can carry a device with strong security features into such a region without such a high risk of
being arrested.

	

	

	

	

	

	

	

	

Statement of James Willcox
February 6, 2015

My name is James Willcox. I hold the position of Staff Platform Engineer at Mozilla

where I lead a team working on the Firefox web browser for Google Android devices. I have
been a professional software engineer for twelve years, and have experience with development in
a variety of environments and platforms.

In this statement, I explain how mobile software development at Mozilla and in our open

source development community uses “root” access on mobile devices and why it’s important that
the community continue to have such access.

It may first be helpful to define what root access means in the context of an Android

device. When colloquially referring to root, there are really two different things that people could
be referring to. The most common definition means that it’s possible to gain administrative
access. Dating back to the first UNIX operating systems, “root” is the name of the administrator
account on a multi-user system. The root user is able to do things that other unprivileged users
are not. Since Android is based on a UNIX-inspired operating system, Linux, that concept
applies here. Later on I will give examples of how we use this privileged access to develop
software at Mozilla.

The second definition of “root” relates to what will be allowed when the device starts up.

One of the first pieces of code that runs when you power on an Android device is called the
bootloader. The main objective of this code is to load and run the operating system kernel, which
is the heart of the system. The kernel is responsible for controlling and mediating access to the
various components of the device (screen, cellular radios, storage, audio, etc). Most, if not all,
Android devices on the market are released with a bootloader that will only load a kernel that is
cryptographically signed by the manufacturer. This prevents a user from loading his own kernel,
even after obtaining the root user access defined above.

Mozilla develops and distributes the Firefox web browser and the Firefox OS mobile

operating system. Many aspects of the development process for Firefox and Firefox OS require
access to the low-level functionality on different mobile devices. For example, until recent
versions of Android, it was not possible to attach a native code debugger to a process without
root access. This makes it extremely difficult to find out where bugs (programming errors) occur,
and is a normal development tool on other operating systems. This limitation is removed in
newer Android versions, but it takes a long time for the phones deployed throughout the world to
catch up. Manufacturers of Android devices have a fairly weak record regarding operating
system updates, so many users need to buy a new device in order to obtain a newer version.
Consequently, if we want to diagnose a problem specific to one of these older devices, we need
to acquire root access.

Another example of a way we use root access during development today is for product

testing. Manual (human) testing of software can be slow, expensive, and error prone. Automated,
computer-controlled, testing is becoming increasingly prevalent for mobile development, and is
already very common on other systems. In order to do this, we need to be able to simulate how a
user would interact with the device. At Mozilla, we have such a system. We can simulate a user
touching the screen and performing various gestures (panning, scrolling, zooming, tapping), and
our application responds to those inputs exactly as it would a human. These simulated inputs,

	
 2	

however, do not have the inconsistency, time, and cost incurred by a person doing it, making the
tests more effective. While Android does have a facility for simulating input, we found it to be
unsuitable for our usage, as the resulting input was treated differently from real user interaction.
The solution we have introduces the input events at the operating system level, resulting in the
input events being indistinguishable from real ones. This type of simulation requires root
(administrative user) access.

As mentioned above, Android devices do not always get timely operating system updates.

This is different from personal computer (PC) operating systems like Apple OS X and Microsoft
Windows, which get regular updates in order to fix errors or introduce additional features.
Frequently, these updates address security vulnerabilities that would allow an attacker to gain
unauthorized access to the system. Mobile operating systems also have security vulnerabilities,
but without frequent updates these issues cannot be addressed. This leaves the mobile user more
open to the myriad of consequences related to a security breach (viruses, data theft or
destruction, etc). This is an area where a community-supported operating system can help.
Because the Android source code is available, it’s possible for developers to build it themselves.
If you have root access to a particular device (typically, both the bootloader and administrative
user), it is then possible to install that operating system, which could have any change the
developer desired -- including security fixes or new features. There exists today a vibrant
community doing this for Android devices, many of them with millions of users, none of which
would be possible without root access.

Without permission and specific passwords or other secret information from device

manufacturers, it is difficult to gain root access to mobile devices for the software development
process. Some manufacturers have a “blessed” method for rooting a limited set of their products.
Others, like Google’s Nexus line of products, are specifically designed to allow this. The
majority of Android devices in the world, however, do not have any manufacturer-approved way
to gain any type of root access. For those devices, motivated individuals have exploited security
vulnerabilities in the operating system in order to gain this access.

Mozilla develops software that runs on both phone handsets and tablets. From my
perspective as a developer, there is little difference between these devices, especially in the case
of Android. They have very similar hardware characteristics, with the exception of screen size,
and all of the same limitations to software development described here apply to tablets as well.

