Trusted Computing: Promise and Risk

By Seth Schoen

Introduction

Computer security is undeniably important, and as new vulnerabilities are discovered and
exploited, the perceived need for new security solutions grows. "Trusted computing"
initiatives propose to solve some of today's security problems through hardware changes
to the personal computer. Changing hardware design isn't inherently suspicious, but the
leading trusted computing proposals have a high cost: they provide security to users
while giving third parties the power to enforce policies on users' computers against the
users' wishes -- they let others pressure you to hand some control over your PC to
someone else. This is a "feature" ready-made for abuse by software authors who want to
anticompetitively choke off rival software.

It needn't be this way: a straightforward change to the plans of trusted computing vendors
could leave the security benefits intact while ensuring that a PC owner's will always
trumps the wishes of those who've loaded software or data onto the PC.

Redesigning PC hardware for security

There is a widespread perception that personal computer security is in an unfortunate
state and that something must be done to fix it. There are many promising approaches to
improving security --redesigning operating systems, changing programming
methodologies, or altering the PC's hardware itself. It is well known that a comprehensive
defense against the security threats faced by PC users will involve several approaches,
not just one. An insecure system can't magically become "secure" with the addition of a
single piece of technology.

Changes to the design of PC hardware are one useful tool among many for improving
security. While hardware changes aren't a prerequisite for increased security, they're
undeniably helpful -- for example, by providing a way to store private keys (and therefore
the private documents protected by those keys) safely. One family of projects to add
security to PCs through hardware changes is known as "trusted computing". This broad
term includes a mix of initiatives by individual processor manufacturers and OEMs,
along with two particularly well-known larger projects.

The first of these is an operating system project by Microsoft -- originally called
Palladium and now referred to as the Microsoft Next-Generation Secure Computing
Base, or NGSCB. The NGSCB project specifies software changes that take advantage of
the security benefits made available by a planned new PC hardware design. The other
well-known project is a hardware specification project run by a consortium originally
called the Trusted Computing Platform Alliance, or TCPA. TCPA issued several



specification documents and then changed its name to the trusted computing group, or
TCG.

Between them, these two projects have created a bewildering array of new terminology,
including the obligatory thicket of new acronyms. In several cases, one of these projects
has devised many different names for a single concept -- even as the other project has its
own entirely different terminology. A reasonably complete glossary for these two
projects could fill dozens of pages. In the interest of simplicity, we note that the
requirements of NGSCB are converging with the features of the design specified by
TCG. (Microsoft is a TCG member and has expressed an interest in using the TCG
design in the role of the hardware components required by NGSCB.) Some OEMs have
begun to integrate early TCG chips onto their computers' motherboards; in the future,
more computer manufacturers may include future versions of trusted computing circuits
in their PCs. The NGSCB software would be one application of several which could take
advantage of the features of these chips.

While these projects are still distinct, it is reasonable to speak of a single "trusted
computing architecture" toward which both projects are headed. (Only a portion of this
architecture is described by the most recently published TCG specification, and, as TCG
notes, additional software will be required to make use of many of these features.) Less
well known trusted computing projects under development by processor vendors (and
TCG members) Intel and AMD may fill in some of the gaps between what TCG has so
far specified and what NGSCB would require. Intel's LaGrande Technology (LT) and
AMD's Secure Execution Mode (SEM), for example, provide hardware support needed
for all the major feature groups in NGSCB. The Intel and AMD projects are not discussed
as separate entities here, but their features would build on TCG features to provide the
hardware support demanded by NGSCB.

One important similarity between the NGSCB design and the existing TCG specification
is that both contain a "remote attestation" feature, which we will criticize extensively
below. Even though there are differences between Microsoft's and TCG's technical
descriptions of remote attestation, both can, given proper operating system support, be
used in functionally equivalent ways. Whether or not the NGSCB and TCG projects
converge on a single hardware design, the general criticisms of attestation here will
properly apply to either.

We are describing a work in progress, but it is important that we start now to understand
the proposed changes to the PC and their likely effects on our computing activities.
Broadly speaking, the trusted computing architecture is a misguided implementation of a
valuable idea, and would offer both advantages and disadvantages to computer owners.
In Microsoft's account of the trusted computing architecture, the anticipated changes are
divided at a high level into four groups, all of which require new hardware to be added to
today's PCs. These are

1. Memory curtaining
2. Secure input and output



3. Sealed storage
4. Remote attestation

Each feature has a different security rationale, although the features can be used in
conjunction with one another.

1. Memory curtaining

Memory curtaining refers to a strong, hardware-enforced memory isolation feature to
prevent programs from being able to read or write one another's memory. Today, an
intruder or malicious code can often read or alter sensitive data in a PC's memory. In the
trusted computing design, even the operating system should not have access to curtained
memory, so an intruder who gains control of the very operating system would not be able
to interfere with programs' secure memory.

Although memory isolation can be achieved in software, this requires some combination
of rewriting operating systems, device drivers, and possibly even application software.
Implementing this feature in hardware instead permits greater backwards compatibility
with existing software and reduces the quantity of software which must be rewritten. (In
general, many of the security benefits of trusted computing could be achieved in some
form simply by rewriting software, but this appears impractical to some.)

2. Secure I/O

Secure input and output, or secure 1/O, aims to address the threats posed by keyloggers
and screen-grabbers, software used by snoops and intruders to spy on computer users'
activities. A keylogger records what you type, and a screen-grabber records what's
displayed on the screen. Secure I/O provides a secure hardware path from the keyboard to
an application -- and from the application back to the screen. No other software running
on the same PC will be able to determine what the user typed, or how the application
responded. (At the same time, secure I/O will provide protection against some more
esoteric attacks. It will allow programs to determine whether their input is provided by a
physically present user, as distinct from another program impersonating a user. And it
will defeat some cases of forgery where one program attempts to corrupt or mask
another's output in order to deceive the user.)

3. Sealed storage

Sealed storage addresses a major PC security failing: the inability of a PC to securely
store cryptographic keys. Customarily, the keys and passwords that protect private
documents or accounts are stored locally on the computer's hard drive, alongside the
documents themselves. This has been compared to leaving the combination to a safe in
the same room with the safe itself. In practice, intruders who break into a computer can
frequently copy decryption and signing keys from that computer's hard drive. Since the
keys must be accessible to computer users in order to be usable for their intended
purpose, security engineers have faced a quandary: how can keys be stored so that they
are accessible only to legitimate users and not to, say, a virus, which might acquire the
same privileges as a legitimate user?



Sealed storage is an ingenious invention that generates keys based in part on the identity
of the software requesting to use them and in part on the identity of the computer on
which that software is running. The result is that the keys themselves need not be stored
on the hard drive but can be generated whenever they are needed -- provided that
authorized software tries to generate them on an authorized machine. If a program other
than the program that originally encrypted, or "sealed", private data should attempt to
decrypt, or "unseal", that data, the attempt is guaranteed to fail. Similarly, if the data is
copied in encrypted form to a different machine, attempts to decrypt it will continue to be
unsuccessful. Thus, your e-mail could be readable to your e-mail client, but
incomprehensible to a virus. Sealed storage represents a clever solution to a previously
intractable key storage problem.

For example, suppose you keep a private diary on your PC today. You want to prevent
the diary from being moved off your computer without your permission, much as you
might lock a paper diary inside a desk drawer. While existing access control and
encryption systems address this goal, they might be bypassed or subverted. If someone
compromises your system, or it becomes infected with a worm or virus, local software
could be altered, or private documents could be e-mailed or copied to other computers.
(The SirCam e-mail worm did precisely this -- whenever it infected a computer, it sent
files it found there as e-mail attachments to randomly chosen Internet users. A substantial
amount of private and confidential information was inappropriately disclosed as a result.)

You can encrypt your diary using a password, but if your password is short, someone
who can copy the encrypted diary will still be able to decrypt it (by trying each possibility
in a brute force attack). What's more, if the encryption software you use, or the editor in
which you compose the diary, is surreptitiously replaced with a modified version, it
might leak the decrypted diary's text (or your password) to a third party.

Sealed storage can work together with memory curtaining and secure I/O to ensure that
your diary can only be read on your computer, and only by the particular software with
which you created it. Even if a virus or worm like SirCam leaks your encrypted diary, the
recipient will not be able to decrypt it. If an intruder or a virus surreptitiously alters your
encryption software, it will no longer be able to decrypt the diary, so the contents of your
diary will remain protected.

4. Remote attestation

Remote attestation is the most significant and the most revolutionary of the four major
feature groups described by Microsoft. Broadly, it aims to allow "unauthorized" changes
to software to be detected. If an attacker has replaced one of your applications, or a part
of your operating system with a maliciously altered version, you should be able to tell.
Because the attestation is "remote", others with whom you interact should be able to tell,
too. Thus, they can avoid sending sensitive data to a compromised system. If your
computer should be broken into, other computers can refrain from sending private
information to it, at least until it has been fixed.



While remote attestation is obviously useful, the current TCG approach to attestation is
flawed. TCG attestation conspicuously fails to distinguish between applications that
protect computer owners against attack and applications that protect a computer against
its owner. In effect, the computer's owner is sometimes treated as just another attacker or
adversary who must be prevented from breaking in and altering the computer's software.

Remote attestation works by generating, in hardware, a cryptographic certificate attesting
to the identity of the software currently running on a PC. (There is no determination of
whether the software is good or bad, or whether it is compromised or not compromised.
"Identity" is represented by a cryptographic hash, which simply allows different
programs to be distinguished from one another, or changes in their code to be discerned,
without conveying any sort of value judgment.) This certificate may, at the PC user's
request, be provided to any remote party, and in principle has the effect of proving to that
party that the machine is using expected and unaltered software. If the software on the
machine has been altered, the certificate generated will reflect this. We will see that this
approach, although elegant, proves problematic.

How trusted computing affects the PC

Each of these four feature groups is likely to be useful to computer security, because each
can be used by appropriate software to prevent or mitigate real attacks currently used
against PCs. Thus, a PC with hardware support for these features can provide security
guarantees that might be difficult to offer without hardware support. Of course, flaws in
software will still permit other attacks, including the disclosure of private information.
Trusted computing technology can't prevent computer security holes altogether. In
general, it seeks to contain and limit the damage that can result from a particular flaw.
For instance, it should not be possible for a coding flaw in one application (like a web
browser) to be abused to copy or alter data from a different application (like a word
processor). This sort of isolation and containment approach is an important area of
computer security research and is used in many different approaches to computer
security, including promising techniques outside of trusted computing.

The trusted computing features just described will add new capabilities to the PC. To be
used, they must be supported by software; in the absence of trusted computing software
drivers, the trusted computing PC is just an ordinary PC, which remains capable of
running all existing PC software. To put this another way, the trusted computing
architecture is designed to be backwards-compatible in supporting the ability to run
existing operating systems and application software. Microsoft also anticipates that future
versions of Microsoft Windows (which could include NGSCB software) would be
backwards compatible, able to run essentially all of today's DOS and Windows
applications. In addition, the new PCs could run new trusted-computing-aware
applications that take advantage of the new hardware features.



Misconceptions about trusted computing

Misconceptions about this design abound. The most common misconception denies that
the trusted computing PCs would really be backwards-compatible or able to run existing
software. While it is certainly possible for manufacturers to build non-backwards-
compatible PCs, or PCs incapable of running particular code, nothing in the TCG
specifications insists on this. More importantly, the trusted computing architecture
security model does not require that insecure, harmful, or undesirable software be
prevented from running. The security model instead concentrates on software isolation --
preventing running programs from interfering with one another.

When programs are adequately protected against interference by other programs, there is
no security requirement that any particular software should be prevented from running.
Just as multi-user operating systems allow users to run the software of their choice while
protecting other users from the effects of that software, NGSCB could allow users to run
the software of their choice while protecting other software from its effects. Only a
particularly crude security model would require prohibiting "bad" software from a
computer entirely, and the NGSCB model is not so crude. In addition, that approach
would require some means of determining which software is "bad", which would truly be
a daunting task. (Some proprietary systems assume that all software not signed by a
recognized authority is "bad", but users would properly reject this heavy-handed
approach in the computer environment. They rightly insist on being able to write and use
software without the prior approval of some authority.)

None of the hardware demanded by NGSCB appears to be specific to Microsoft
Windows. The TCPA/TCG hardware design is clearly not specific to any particular
operating system. IBM researchers have recently published software under the GNU GPL
to make a TCPA TPM chip work with the Linux kernel. This software is usable today to
improve the security of cryptographic key storage on Linuxbased systems running on
hardware that supports TCPA.

Neither TCG nor NGSCB would itself inherently prevent users from using any particular
operating system, program, or data file. And neither inherently requires or includes a
mechanism to spy on users.

Where's the problem?

It is clear that trusted computing hardware provides security benefits, if software is
prepared to take advantage of it. But trusted computing has been received skeptically and
remains controversial. Some of the controversy is based on misconceptions, but much of
it is appropriate, since trusted computing systems fundamentally alter trust relationships.
Legitimate concerns about trusted computing are not limited to one area, such as
consumer privacy or copyright issues.



We have at least two serious concerns about trusted computing. First, existing designs are
fundamentally flawed because they expose the public to new risks of anti-competitive
and anti-consumer behavior. Second, manufacturers of particular "trusted" computers and
components may secretly implement them incorrectly. We will discuss the first of these
problems in greater detail here.

Problem: Third-party uncertainty about your software environment is
normally a feature, not a bug

Even if the hardware is implemented according to published specifications, it could still
be used in ways that harm computer owners. (Lucky Green, Ross Anderson)

Even as trusted computing architectures provide security benefits, they may include
features that can be abused, to the detriment of the customers who are asked to adopt the
technology. Chief among these features is remote attestation, which Microsoft describes
as "break[ing] new ground in distributed computing" because no comparable feature
exists in current computers.

Security design necessarily includes specifying a threat model: what kinds of attacks and
what kinds of attackers is a security measure meant to prevent against? A security
measure that prevents one attack may be completely ineffective against a different sort of
attack; conversely, a security measure required for some purpose might be useless at best
for those who do not share that goal. Our most fundamental concern is that trusted
computing systems are being deliberately designed to support threat models in which the
owner of a "trusted" computer is considered a threat. These models are the exception
rather than the rule in the history of computer and communications security, and they are
not part of the rationales for trusted computing publicly offered by its proponents.

Attestation is appropriate for the purpose of preventing the software on a computer from
being changed without the knowledge of the computer's owner (for instance, by a virus).
Unfortunately, the attestation model in TCG's current design can equally effectively
prevent the software on a computer from being changed deliberately by the computer
owner with his or her full knowledge and consent. While the owner is always free to alter
software, attestation adds a new risk: doing so may now eliminate the computer's ability
to interoperate with other computers.

Because third parties currently have no reliable way to tell what software you are using,
they have no reliable way to compel you to use the software of their choice. This aspect
of the status quo is almost always a benefit for computer owners -- in terms of improved
competition, software choice, software interoperability, and owners' ability to control
their computers -- and therefore no attestation scheme that changes this situation is likely
to be beneficial to consumers. Examples of the problems with changing this part of the
status quo appear below.



Examples of abuses of remote attestation

Let's consider a few concrete examples of how TCG's attestation approach can harm
interoperability or be used against computer owners.

1. On the Web

A web site could demand a software attestation from people wishing to read it. If they
declined to provide an attestation, the site would refuse to deal with them at all; if the
attestation showed that they were using "unapproved" software, the site would likewise
decline to interact with them. Only those who could produce a digital certificate proving
that their computers' software was satisfactory to the remote site would be permitted to
use it. And this certificate could be produced -- in the current TCG scheme of things --
only if its contents were accurate.

Today, there is no really reliable way to achieve this effect. Therefore, attempts to coerce
users into using particular software are currently ineffective; web sites are hard-pressed to
control what operating systems and applications their users can use. Reverse engineering
allows the creation of competitive new software that works well with existing software
and services, and therefore computer owners have real choice. It is effectively impossible
to punish them for choosing to use software other than that favored by those they deal
with. If they want to use a different web browser or a different operating system, they
know that they are unlikely to be locked out by the services most important to them.

For instance, some of today's on-line banking services claim to "require" Microsoft's
browser, but users of other software are readily able to instruct their browsers to
impersonate Internet Explorer. As far as the bank is concerned, its customers are
accessing the site with the browser it demanded, but the users are not locked into
technology decisions dictated by the shortsightedness of their financial institutions.

In a widely publicized case, MSN, the Microsoft Network, briefly refused to serve web
pages to non-Microsoft browsers. In the interim, users of competitive products were able
to fool MSN into thinking they were running Microsoft browsers. This would be
impossible in an environment of routine NGSCB-style remote attestations. By allowing a
web site to lock out disfavored software this way, these attestations would let anyone
with market power leverage that power to control our software choices.

Security has nothing to do with many sites' motivations for preventing the use of
disfavored software. Indeed, their reasons may be entirely arbitrary. In some cases, a site
operator wants to force you to use a particular program in order to subject you to
advertising. By verifying your use of an "approved" client, the site can satisfy itself that
you have been forced to view a certain number of advertisements.

2. Software interoperability and lock-in

Software interoperability is also at risk. A developer of a web server program, file server
program, e-mail server program, etc., could program it to demand attestations; the server



could categorically refuse to deal with clients that had been produced by someone other
than the server program's publisher. Or the publisher could insist on licensing fees from
client developers, and make its server interoperate only with those who had paid the fee.
(It 1s similarly possible to create proprietary encrypted file formats which can only be
read by "approved" software, and for which the decryption keys must be obtained from a
network server and are extremely difficult to recover by reverse engineering.)

The publisher in this case could greatly increase the switching costs for its users to adopt
arival's software. If a user has a large amount of important data stored inside a
proprietary system, and the system communicates only with client software written by the
proprietary system's publisher, it may be extremely difficult for the user to migrate his or
her data into a new software system. When the new system tries to communicate with the
old system in order to extract the data, the old system may refuse to respond.

The Sambea file server is an important example of interoperable software created through
reverse engineering. Samba developers studied the network protocol used by Microsoft
Windows file servers and created an alternative implementation, which they then
published as free/open source software. Samba can be deployed on a computer network
in place of a Windows file server, and Windows client machines will communicate with
it just as if it were a Windows server. (Similarly, Samba provides the means to allow non-
Windows clients to access Windows file servers.) Without competitive software like
Samba, users of Windows clients would be forced to use Windows servers, and vice
versa. But if software could routinely identify the software at the other end of a network
connection, a software developer could make programs demand attestations and then
forbid any rival's software to connect or interoperate. If Microsoft chose to use NGSCB
in this way, it could permanently lock Samba out of Windows file services, and prevent
any useful competing implementations of the relevant protocols except by specific
authorization.

Similarly, instant messaging (IM) services have frequently tried to lock out their
competitors' clients and, in some cases, free/open source IM clients. Today, these
services are typically unsuccessful in creating more than a temporary disruption for users.
An attestation mechanism would be a powerful tool for limiting competition and
interoperability in IM services. Some client applications could be permanently prevented
from connecting at all, even though they offer features end-users prefer.

These are examples of a more general problem of "lock-in", often practiced as a
deliberate business strategy in the software industry, to the detriment of business and
home computer users alike. Unfortunately, the TCG design provides powerful new tools
to enable lock-in. Attestation is responsible for this problem; sealed storage can
exacerbate things by allowing the program that originally created a file to prevent any
other program from reading it. Thus, both network protocols and file formats can be used
to attack software interoperability.

3. DRM, tethering, forced upgrades, and forced downgrades



Many people have speculated that trusted computing technology is a way of bringing
digital rights management (DRM) technology to the PC platform. Some portions of the
trusted computing research agenda have roots in DRM, and Microsoft has announced a
DRM technology (Microsoft Rights Management Services) that it says will make use of
NGSCB. However, trusted computing developers deny that DRM is the main focus of
their efforts, and trusted computing is useful for many applications besides DRM.
Ultimately, DRM is just one of several uses of a technology like NGSCB -- but it
illustrates the general problem that NGSCB's current approach to attestation tends to
harm competition and computer owners' control.

The NGSCB design's elements can all be useful to implementers of DRM systems.
Curtaining prevents information in decrypted form from being copied out of a DRM
client's memory space, which prevents making an unrestricted clear copy. Secure output
can prevent information displayed on the screen from being recorded, which prevents the
use of "screen-scrapers" or device drivers that record information rather than displaying
it. Sealed storage allows files to be stored encrypted on a hard drive in such a way that
only the DRM client that created them will be able to make use of them. And remote
attestation can prevent any program other than a publisher-approved DRM client from
ever receiving a particular file in the first place.

Among these elements, remote attestation is the linchpin of DRM policy enforcement. If
a remote system lacks reliable knowledge of your software environment, it can never
have confidence that your software will enforce policies against you. (You might have
replaced a restrictive DRM client with an ordinary client that does not restrict how you
can use information.) Thus, even though other NGSCB features aid DRM
implementations, only remote attestation enables DRM policies to be instituted in the
first place, by preventing the substitution of less-restrictive software at the time the file is
first acquired.

Other consumer-unfriendly software behaviors which can be implemented by means of
attestation, combined with sealed storage, include tethering (preventing a program or a
file from being migrated from one computer to another), forcing software upgrades or
downgrades, and enabling some limited classes of "spyware" -- in this case, applications
that phone home to describe how they are being used. (Some of these behaviors might be
good things if they occur at a computer owner's behest, but not if they occur at a software
publisher's or service provider's whim. For example, you might want to prevent a
sensitive file from being moved off your computer, but you wouldn't want other people to
be able to prevent you from moving your own files around.) Although all these
unfriendly behaviors can be implemented in software today, they can in principle be
defeated by well-understood techniques such as running a program in an emulated
environment, or altering it to remove the undesirable behavior. Remote attestation makes
it possible for the first time for a program to obtain and communicate reliable evidence
about whether it is running in an emulator or whether it has been altered.

More generally, attestation in the service of remote policy enforcement leads to a variety
of mechanisms of "remote control" of software running on your computer. We emphasize



that these remote control features are not a part of NGSCB, but NGSCB does enable their
robust implementation by software programmers. Lucky Green provides the example of a
program written to receive from some authority a "revocation list" of banned documents
it is no longer permitted to display. This mechanism would have to have been
implemented in the software when it was initially written (or it would have to be added
through a forced upgrade). If such a restriction were implemented, however, it would be
essentially impossible for the user to override. In that case, some authority could
remotely revoke documents already resident on computers around the world; those
computers would, despite the wishes of their owners, comply with the revocation policy.
The enforcement of this policy, like others, against the computer owner is dependent on
the remote attestation feature.

4. Computer owner as adversary?

The current version of remote attestation facilitates the enforcement of policies against
the wishes of computer owners. If the software you use is written with that goal in mind,
the trusted computing architecture will not only protect data against intruders and viruses,
but also against you. In effect, you, the computer owner, are treated as an adversary.

This problem arises because of the attestation design's single-minded focus on accurately
reflecting the computer's state in every situation -- making no exceptions. A computer
owner can disable attestation entirely, but not cause an attestation that does not reflect the
current state of her PC -- you can't fool your bank about what browser you're using or to
your other PC about what kind of Windows file sharing client you're running. This
approach benefits the computer owner only when the remote party to whom the
attestation is given has the same interests as the owner. If you give an attestation to a
service provider who wants to help you detect unauthorized modifications to your
computer, attestation benefits you. If you're required to give an attestation to someone
who aims to forbid you from using the software of your choice, attestation harms you.

A user-centered, pro-competitive approach to attestation features would give the owner
the power to guarantee that attestation is never abused for a purpose of which the owner
disapproves, maximizing computer owners' practical control over their computers in real-
world network environments.

Some trusted computing developers insist that their existing approach to attestation is
reasonable because giving an attestation is voluntary. In every situation, they argue, you
can decline to give an attestation if you prefer not to present one. (Indeed, TCG's design
allows you to turn the TCG TPM chip off entirely, or decide whether to present an
attestation in a particular situation.) But as we've seen, attestation can be used to create
barriers to interoperability and access, so users will face an enormous amount of pressure
to present an attestation. It's economically unreasonable to assume that a technology will
benefit people solely because they can decide whether to use it.

We are not saying that the ability to communicate information about a computer's
software environment is undesirable. This capability might well be useful for some



security applications. We simply observe that the content of information about a
computer's software environment should always be subject to the close control of that
computer's owner. A computer owner -- not a third party -- should be able to decide, in
her sole discretion, whether the information acquired by a third party will be accurate.
This ensures that the attestation capability will not be used in a way contrary to the
computer owner's interest.

A solution: Owner Override

The lack of computer-owner control of the content of attestations is the central problem
with the current trusted computing proposals. It is an unacceptably grave design flaw that
must be remedied before the trusted computing architecture as a whole package will be of
clear benefit to computer owners.

A simple measure we call Owner Override could fix the problem by restoring others'
inability to know for certain what software you're running -- unless you decide you would
be better off if they knew. Owner Override subtly changes the nature of the security
benefit provided by attestation. Currently, attestation tells remote parties whether the
software on your computer has been changed. Attestation plus Owner Override would let
remote parties know if the software on your computer has been changed without your
knowledge. Thus, detection of illicit activity would still be practical. If, however, you had
made deliberate changes on your own computer, you could conceal them, just as you can
today, to prevent someone else from using your choices as a reason to discriminate
against you.

Owner Override works by empowering a computer owner, when physically present at the
computer in question, deliberately to choose to generate an attestation which does not
reflect the actual state of the software environment -- to present the picture of her choice
of her computer's operating system, application software or drivers. Since such an
attestation can only be generated by the computer owner's conscious choice, the value of
attestation for detecting unauthorized changes is preserved. But the PC owner has
regained fine-grained control, even in a network environment, and the PC can no longer
be expected to enforce policies against its owner. Owner Override removes the toolbox
that allows the trusted computing architecture to be abused for anti-interoperability and
anti-competitive purposes. It restores the important ability to reverse engineer computer
programs to promote interoperability between them. Broadly, it fixes trusted computing
so that it protects the computer owner and authorized users against attacks, without
limiting the computer owner's authority to decide precisely which policies should be
enforced. It does so without undermining any benefit claimed for the TCG architecture or
showcased in Microsoft's public NGSCB demonstration. And it is consistent with TCG's
and most vendors' statements about the goals of trusted computing.

(In a corporate setting, the corporation might be the owner of the computers its
employees use, retaining the power to set network computing polices for its users. Since
Owner Override requires users to provide owner credentials before defeating policies, it



does not impair a computer owner's control over authorized users. A corporation can, for
example, still use attestations to control what software employees can use on corporate
desktop machines when they access corporate network resources.)

Owner Override does preclude some interesting new applications, particularly in
distributed computing. In the status quo, it's not typically possible to send data to an
adversary's computer while controlling what the adversary can do with it. Owner
Override preserves that aspect of the status quo, to the regret of application developers
who would like to be able to trust remote computers even while distrusting their owners.
Similarly, Owner Override prevents trusted computing from being used to stop cheating
in network games. Since Owner Override -- like trusted computing in general -- removes
no existing features or functionality from the PC, we believe that its advantages
significantly outweigh its disadvantages.

Despite the plausible desirability of hardware improvements to enhance computer
security, not just any set of hardware changes will do. PC owners should think carefully
about which direction they want their platform to develop. Trusted computing systems
that protect your computer against you and prevent you from overriding policies are, on
balance, a step backward. An Owner Override feature or its equivalent is a necessary fix

to the design of trusted computing systems.

(This table shows how Owner Override preserves most security benefits of remote
attestation while avoiding its risks.)

Status Quo

Attestation

Attestion +
Owner Override

Pros

Competition and
interoperability are the
norm

User control and choice
are protected

Lock-in and remote

Compromise of software
(e.g., by a virus) can be
made detectable by a
remote party, which can
act on this information

Cheating in network
games can be prevented,

Compromise of software
can still be made
detectable by a remote

party

An organization can more
effectively enforce policies
against its own members,

control are difficult and distributed so long as they are using
because computer applications computers owned by the
owners have substantial | (Distributed.net, organization

control over all local
software in all
circumstances

SETI@Home, etc.) can
run on computers owned
by untrustworthy parties
without risking integrity
of calculations or
confidentiality of data

Organizations can more

Computer owners retain
substantial control over
local software

Competition,
interoperability, user
control and choice are




effectively enforce
policies against their
own members

"Paternalist" security
policies that protect
users from the
consequences of certain
of their own mistakes
can be implemented

preserved

Cons

There is no way in
general to allow a
remote party to detect
whether, without the
computer owner's
knowledge, local
software has been
inappropriately
modified

Cheating in network
games cannot be
prevented

Cheating by
unscrupulous
participants in
distributed computing
projects cannot be
prevented

"Paternalist" security
policies that protect
users against their own
mistakes are difficult to
enforce

Third parties can enforce
policies against
computer owner where
traditionally these would
not have been
technologically
enforceable, or would
have been enforceable
only with difficulty --
for example:

* DRM

* application lock-in

* migration and back-up
restrictions

* product activation

* product tethering

* forced upgrade

* forced downgrade

* application-specific
spyware

* preventing reverse
engineering, etc.

Cheating in network games
or by unscrupulous
distributed computing
participants still cannot be
prevented

"Paternalist" security
policies remain difficult to
enforce

To the extent that
computer owners might
potentially benefit from the
robust enforcement of
DRM policies, they would
not obtain those benefits

Problem: Verification of implementations

How can computer owners know that their trusted computing hardware has been
implemented according to its published specifications? (Ruediger Weiss)

This is an important problem for all cryptographic hardware, not just trusted computing
hardware. But since most PCs have not previously contained any specialized
cryptographic hardware, most PC users simply haven't had occasion to worry about this




problem in the past. While any hardware could contain back doors or undocumented
features, cryptographic hardware is unique in that it has access to important secret
information as well as opportunities to leak that information through undetectable covert
channels (for example, in attestation certificates). Thus, it is important to assure that
trusted computer hardware manufacturers implement the specifications correctly, without
including undocumented features that would allow them or third parties to obtain
unauthorized access to private information.

Conclusion

We recognize that hardware enhancements might be one way to improve computer
security. But treating computer owners as adversaries is not progress in computer
security. The interoperability, competition, owner control, and similar problems inherent
in the TCG and NCSCB approach are serious enough that we recommend against
adoption of these trusted computing technologies until these problems have been
addressed. Fortunately, we believe these problems are not insurmountable, and we look
forward to working with the industry to resolve them.



